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We establish a novel representation of arbitrary Euler-Zagier sums in terms of weighted
vacuum graphs. This representation uses a toy quantum field theory with infinitely many
propagators and interaction vertices. The propagators involve Bernoulli polynomials and
Clausen functions to arbitrary orders. The Feynman integrals of this model can be decom-
posed in terms of a vertex algebra whose structure we investigate. We derive a large class
of relations between multiple zeta values, of arbitrary lengths and weights, using only a
certain set of graphical manipulations on Feynman diagrams. Further uses and possible
generalisations of the model are pointed out.
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1. Introduction. The perturbative evaluation of Green’s functions in quantum field
theory leads to a class of iterated parameter integrals whose explicit calculation be-
comes very difficult beyond the first few orders in the coupling constant expansion.
Any progress in this area of work must be based on an intimate knowledge of the prop-
erties of various types of special functions such as polylogarithms, hypergeometric
functions, and their generalisations (see [39]).

In recent years, some structure is seen to emerge from the seemingly haphazard
occurrence of those special functions as the values of individual Feynman diagrams.
Kreimer’s hypothesis [27], based on a rule of associating knots to Feynman diagrams,
allows one to predict from knot-theoretical considerations the level of transcenden-
tality which can possibly appear in the counterterm coefficients of an ultraviolet di-
vergent diagram. Even though it has been verified for a large number of examples [13]
the raison d’étre for the correspondence between graphs and knots remains presently
mysterious. More recently, there are indications that knot-theoretical concepts may
be of relevance even for the finite parts of Feynman diagrams [11].

The remarkably rich mathematical structures surfacing in this correspondence
make Feynman diagrams increasingly interesting from the pure mathematician’s point
of view. The objects encountered in the calculation of UV divergences in perturbative
quantum field theory, multiple harmonic sums, are of considerable relevance to num-
ber theory and other branches of mathematics (see [15, 17, 19, 28, 34, 41, 42, 44]).

Quantum field theory amplitudes can be calculated in coordinate space or in mo-
mentum space. In four-dimensional field theory the arising integrals are normally of
a similar type and degree of difficulty. This is very different in the case of a one-
dimensional quantum field theory compactified on a circle, which is considered in the
present paper. Such quantum field theories arise naturally if one represents one-loop
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amplitudes in D-dimensional field theory in terms of first-quantized path integrals.
An approach to quantum field theory along these lines has gained some popularity
in recent years after it was discovered that it allows one to reorganise ordinary field
theory amplitudes in a manner similar to string theory amplitudes [4, 33, 37, 38, 40].
In this type of formalism the D-dimensional space-time enters as a target space, and
amplitudes are calculated in terms of an auxiliary field theory in one-dimensional pa-
rameter space. Green’s functions in parameter space are then used for the evaluation
of Feynman diagrams in this one-dimensional worldloop theory.

As a simple example, consider the one-loop effective action for a scalar field theory
with a (A/3!)¢3 interaction. This effective action can be expressed in terms of a first-
quantized path integral as follows:

i) = lrdle—mzrj Dx (1) e~ 10 AT +AB (D)) 1.1)

2)o T x(T)=x(0)
Here, T is the usual Schwinger proper-time for the particle circulating in the loop. At
fixed T a path integral has to be calculated over the space of closed loops in space-
time with period T. This integral contains a zero mode which is removed by fixing the
center-of-mass of the loop xo = (1/T) IOT dTtx(T1). The reduced path integral is evalu-
ated perturbatively by expanding the interaction exponential and using the parameter
space Green’s function

2min(ty—-12)/T _ 2 T
762 = |T1—T2| —7(1—1 TZ) - —. (12)

G(Tl,Tz)EZT Z T 6

2 (2min)?
n#0

(The constant part of this Green’s function is irrelevant for the final physical results
and usually deleted from the beginning.) Momentum space methods have also some-
times been used, which in this case lead to Fourier sum representations. In [3, 14], a
number of such sums were calculated to provide a check on the resolution of certain
ambiguities which in the first-quantized formalism can arise in curved backgrounds.
In this comparison we find that terms given by simple polynomial integrals in coordi-
nate space may, in momentum space, correspond to nontrivial multiple sums of the
Euler-Zagier type.

In the present work we turn the logic around, and use this formalism as a tool for
the systematic study of Euler-Zagier sums. Euler-Zagier sums, also called multiple €
values or multiple harmonic series, are defined by

C(ki,...,km) = > ﬁzhkl...km(l,...,l). (1.3)

ny>n>->nm>0 M =" N

They are special values of the multidimensional polylogarithms Lik,, k,,, defined as

Z"l Z"m

) _ ez

lel"‘km (Zl,...,Zm) = Z K _km- (1.4)
ny>n>->npm>0 My =" N

We call m the length (or depth) of such a series, and k; + k» + - - - + kyy, its level (or
weight). Sums of the type (1.3) were first considered by Euler [16]. Euler himself noted
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that numerous relations exist between Euler-Zagier sums. Some simple examples are
the following (all given by Euler):

2(2,1) =20,
_3 1.
€3, =58(4)- 1,1(2) 360
4
—C%(2)-= 1.5
2(2,2) = C(Z) ;(4) 150" (1.5)

C(3,2) = —7C(5)+3§(2)C(3),
€(4,1) =2C(5)-C(2)T(3).

Further results for the length-two case can be found in [1, 43]. Systematic investiga-
tions of Euler-Zagier sums of length higher than two have been undertaken only in
recent years [2, 6, 9, 20, 21, 22, 24, 25, 31, 32, 35]. From the point of view of physics,
the study of their relations is relevant for attempts at a classification of the possible
ultraviolet divergences in quantum field theory [12, 13].

We would like to be able to represent arbitrary such sums in terms of one-dimen-
sional Feynman diagrams. To achieve this goal we have to generalise the usual world-
line path integral formalism in the following ways:

(1) As explained above, the first-quantized loop path integral is defined to run over
the space of all periodic functions, with the constant functions eliminated. Here we
will restrict it to one “chiral half” spanned by the basis functions f;,(u) = e?™inu,
n=1,2,.... (This amounts to a complexification of spacetime.)

(2) We choose the kinetic term of our model in such a way that arbitrary inverse
powers of derivatives will appear.

Those purely mathematical considerations lead us to define the C-model, a one-
dimensional quantum field theory given by the following partition function,

Z(g,A) =J Dx(u)e s,

" ) (1.6)

S = Jdulj duz (I -A2mid Hx (ug)—J dued*W+gxw)
0

Here and in the following 0 = (d/du) denotes the ordinary derivative. The path inte-
gral is to be performed over the Hilbert space

¥ = {X(u) | x(u z e N, |? <oo}. (1.7)

n=1 n=1

The perturbative expansion of both the kinetic and the interaction terms for this toy
model leads to the Feynman rules represented in Figure 1.1.

In Section 2, we write the propagators g(k) explicitly in terms of Bernoulli polynomials
and Clausen functions. We show that any multiple € sum as in (1.3) can be represented
as a Feynman diagram in this model. In Section 3, we investigate the properties of the
elementary tree-level n-point integrals with arbitrary external propagators. Section 4
demonstrates how one can use partial integrations and reality conditions to derive a
large class of relations between multiple ¢ sums. In Section 5, we point out possible
further uses of the model, as well as some generalisations.
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FIGURE 1.1. Feynman rules of the {-model.

2. Basic properties. Inverting the kinetic part of our (nonlocal) Lagrangian (1.6),
and writing 0¥ in the defining basis of the Hilbert space %, we find

® _ k) eZTrlnu12

g3 =g9"% (ur2) = > 2.1)

If we represent the unit circle in the complex plane, this sum will turn into the kth

polylogarithm,
w1 . (21 )
= —— Lig [ = (2.2)
R
(W12 = U1 — U2, z; = e2TUi) We note the following properties of g®:
0 k 0 k k-
EZ%£=—EEQJ=QZW 2.3)

gy = (—D*gly = g™ (1-ur),

C(k)

(k) - =
IO G 2.4)

1
Jo duigi8 =0.

Equation (2.3) can be inverted using the explicitly known integral kernel for inverse
derivatives in this space [37],

1
™ = | duui ot u)g® (u-us),

(ur |07 up) = —%Bn(|u12|)sign" (u12) (2.5)

By (u ul,t
= ”(n'm) + 2(n1i1)' (sign (u12) —1).

Here By denotes the kth Bernoulli polynomial. To write gi’ﬁ) more explicitly we split it
into its real and imaginary parts,

g1y =gl +iglh. (2.6)
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Using the standard integral representation of the polylogarithm

N e L Jl In*"! (x)
Lix(z) = (kfl)!z . dx 1 —xz (2.7)
it is then easy to show that
o _ 1 -
g1 = E((S(ulg) —1+icot(mus)), (2.8)
a1y = = lsign(ulz) 7u12+iln\281n(77u12) |>
127212 T ’
@ _ 1 oo 1 Lr Ingsin (21mu;2)
912 4(|u12| We=gtm 0 d§1—2§cos(2rru12)+§2 ’
g1y = —ﬁ(SIgn(Mu) —2u12) (|uiz | —ui,)
: 1
- J d—glngln(l—ZﬁcosQTrulz)+§2),
1613 Jo &
(k£0even) _ 11 29
even
912 =—§HBI<(|”12|)
S (k241 1 )
i k( 1) J’ AEIt g sin (21Tu12) ’
m* (k-D! Jo 1-2&cos (2mTuyp) + &2
11 .
g5t o = _EHB"(WIZ |)sign (u12)

i (—pkR2

202mk  (k-2)!

Iol %m’“zgln(l —2&cos (2mru2) +&2),

(u12 € [-1,1]). Note also that the imaginary part of gi’ﬁ) is, up to a normalisation
factor, identical with the kth Clausen function Cli(271Tu12) (see [29, 30]). Only the
real parts are present in the calculation of worldline path integrals in standard field
theory. In particular, note that §‘® is, up to a conventional factor of 4, identical with
the function G introduced in (1.2) (for T = 1). Only the imaginary parts are capable of
producing € (n)’s with n odd.

A vacuum diagram in our model involves a multiple integral on the unit circle with
an integrand which is a product of propagators (2.1). (One of the integrations is re-
dundant due to translation invariance.) The result of the integrations can obviously be
decomposed as a sum of multiple € values. Our model thus defines a map from the set
of weighted vacuum graphs to the (vector space generated by) the Euler-Zagier sums.
This map is, moreover, easily seen to be surjective; it will be immediately convincing
that with the above Feynman rules, the sea shell diagram (Figure 2.1) evaluates to

ATk (gg) ™ L (ki k). (2.10)

The u-integrations produce 6 functions for momentum conservation at every vertex,
while the Fourier sums of the inserted g propagators yield Heaviside step functions
leading to the desired ordering of the remaining sums.

3. The elementary vertex integrals. Now we start on an investigation of the prop-
erties of the Feynman integrals in x (= u)-space. An obvious first step is to consider
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FIGURE 2.1. Sea shell diagram representing the general Euler-Zagier sum.

the folding of the elementary vertices with arbitrary sets of propagators. We denote
the elementary vertex integral by

1
L1
Ikll...)?n (uly---;up+q) = JO dug(kl)(ul _u) e .g(kr'>(up—u)

(3.1)
xg"W (u—-upi1)--- g (U—upiq).
We note that it has the following obvious properties:
Iy-lg .
Ik, =0 if p=0o0rqg=0,
(3.2)

-y _ Zl?:lki,"'zq':]lj ki--kp
Ikl"'kp =(=1)= J Ill"'lq .

3.1. Two-vertex integral. By construction two-point vertices can be integrated out
trivially,

1
|, dusalfald - gt (3.3)

3.2. Three-vertex integral. The evaluation of vertex integrals is complicated by
singularities which can appear due to the presence of the cotangent function in g©.
Integrals involving cot(7r112) need to be performed using the principal value prescrip-
tion. One way of calculating them is to transform them into complex contour integrals
via the substitution z = exp(27miu),

dz ﬁ Z+2zk

P 2miz, _ z— 2k

Jlduﬁcot(rr(u—uk)) =i" (3.4)

0

Those are evaluated by means of residues (the poles on the contour give half val-
ues due to the principal value prescription). (We remark that, if one expresses the
propagators of the sea shell diagram via (2.2) and (2.7), and then calculates the u;-
integrals by means of residues, then one arrives precisely at Kontsevich’s integral
representation [26] for the multiple € sum.) The first few integrals are
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Jl ducot(m(u—-up)) =0,

(u—ur)) =06(ur—uz) -1,

(3.5)

—

(u—ug)) = 6(ur —uz) cot (1 (uz —usz))

%%

e Lt
Lt

+0(u1 —usz) cot (1 (us —uz))
+6(up —usz) cot (m(uz —uy)).

Alternatively one can also calculate those integrals recursively using, under the inte-
gral, the following identity:

cot (1ruy2) cot (1Tuy3) +cot (Truny ) cot (1ruas) + cot (Trus; ) cot (rusy)
=—1+ 6(“12)5(“13).

This identity will be of further use later on. With these results, the vertex integral of

(3.6)

three propagators g© is

1
18 (1,102,103) = | dueg® (a1 =) g (w2 ~u)g® (1 -us)

1 .
=2 [6(u13)0(uzs) —6(u13) —6(uz3) + 1+ (6(u13) —1)icot (muss)
+ (6(uz3) —1)icot(mruy3) —cot (muys) cot (muy3)],
(3.7)
and can be identified as
18y (u1,u2,u3) = 919 935 (3.8)
Applying the identity (3.6) gives also
1
Igo(ulvuvaS) gg)gzz glg)gig) - Eglg)
= gg?)glj gz(l))gg) - Egzs (3.9)
= gig)gn +gz?}£iig) - _512.9<0)
Folding of (3.8) with (u1/|0~"|uy) and (U2 [0~™|u,) leads to
1
I un wzus) = | dug™ (- u)g™ (w2 u-ws)
= 9173[)!];_2”):
whereas the forms (3.9) can be folded with (3]0 ¥|us/)
1
Iy 102,10) = | dug® (11 -9 (w2 ~w) g (1~ ua)
0) _(k 0
= giz)gzg giz)gu - 5913)
(3.11)

0 0
:g§1)gi3 gél)gZS —5923

(0) (0) (k)
=912 923 +921 913 - _5129
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FIGURE 3.1. Three-point relation.
Nontrivial is the case

1
It (u , U, U :J duad® (u—u ® (4 —u D (ya—u
ok (U1, U2, U3) o 9" 1)g"( 2)g"P (uz—u) 312

= Liy (z31,212).

The general case of all three indices different from zero can be reduced to this case
by partial integrations, for example,

1
Iy (ug,uo,u3) = L dug™ (us)g" (us2) g (usz4)

1
=| dug" (us1)g'” (us)g® (u
L 9" (u41)g"” (ua2) 9" (us4) (3.13)

1
+J dug® (us1)g"® (us2)g® (uz4)
0

= Lip; (z31,212) +Liz1 (232, 221).

3.3. A three-point relation. Beyond the three-point case the systematic investiga-
tion of the elementary vertex integrals becomes cumbersome. We will be satisfied
here to note that, from the representation (2.8) for g(® and the identity (3.6) we easily
derive the following pair of (complex conjugate) three-point identities:

(0) (0) , (0)(0) , _(0) _(0) (0) (0) 0)
921 931 T Y912 géz +913 923 =1+061293, +03192 +523g§3 — 012013, (3.14)
1
(0) (0) , _(0) _(0) , _(0) (0) (0) (0) (0)
912 913 921 923 T 931 930 = 1+812923 + 063191, +023931 — 612013.
We may represent the first identity graphically as in Figure 3.1. The second identity
has all arrows reversed. Those identities can be used to transform any vertex integral
involving two g(©’s which are either both ingoing or both outgoing.

By iteration of this three-point identity we can contruct an analogous identity for
an arbitrary number of points. The formulas are rather cuambersome and are not given
here.

4. Derivation of multiple C relations. Now we show how to use the formalism
developed above for deriving a large class of multiple C relations by simple manipu-
lations on graphs, with no need to ever explicitly write down sums. In those manipu-
lations we will make use of the following elements:

(1) the triviality of the real part of g‘©, g}? =(1/2)(512—1) (see (2.8));
(2) partial integrations;

(3) the three-point relations (3.14);
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(4) the vanishing of diagrams containing a vertex with only ingoing or only out-
going propagators;
(5) the two-vertex integration formula (3.3).

At intermediate steps sometimes ill-defined sums will appear such as C(1). Those
will be always cancelled out in the final results. The appearance of divergent sums
could be easily avoided using a regularization such as in [9] but we will not do so
here.

4.1. Length two. We begin at length two. The simplest way of arriving at identi-
ties is provided by the first one of the points listed above. Consider the sea shell
diagram at length two (Figure 4.1a), representing C(a, b), and the same diagram with
the middle propagator reversed (Figure 4.1b), representing C(b,a). (We will gener-
ally disregard the coupling constant factors in the following.) Adding up both dia-
grams we can replace the middle propagator by twice its real part (Figure 4.1). Since
gig) = (1/2)(612 — 1), this diagram can then be replaced by the sum of the two dia-
grams shown in the right-hand side of Figure 4.1. Using (3.3) on the rightmost one,

we obtain the identity
Cla,b)+C(b,a) =C(a)C(b)-C(a+D). (4.1)

This identity is well known [9, 21], and has been named reflection formula in [9].

a@b + a@,b = a@h a@,b
(a) (b)

FIGURE 4.1. Diagrammatic representation of the reflection identity.

Another way of obtaining identities is partial integration. Instead of considering the
sea shell diagram (Figure 4.1a), which represents C(a,b), consider the more general
diagram (Figure 4.2) that represents a number Gg p,c = Ga,cp-Fora=0,b =0,0rc =0,
it can be represented by multiple € functions,

Gop,c = C(b)C(c), Gapo=Gaop = C(a,b). (4.2)

To see the first of these identities, add the same diagram with the left propagator re-
versed, and use elements one and four from the above list. For the later discussion we

FIGURE 4.2. Auxiliary diagrams for multiple C relations of length two.
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c b+1 b+1

(@) (b) ()

FIGURE 4.3. Integration by parts.

refer to these diagrams as zeta diagrams in contrast to the other, non-zeta diagrams.
If both a and c are greater than 1, we use integration by parts at the upper vertex
according to Figure 4.3 and obtain

Ga,b,c = Ga—l,b+1,c - Ga,b+1,c—1- (4-3)

This can be repeated until eithera =0 orc =0

c
a+tc-n-1
Ga,b,c = Z (_1)C+n ( a—1 ) GO,a+h+c—n,n

., (4.4)
T

n=1

) Gn,a+h+c—n,0-

The right-hand side of this equation can be translated immediately into C values by
(4.2). For b = 0, we obtain the relation

b 1
C(a,b) = (-1)° [Z( 1)"<“+ o );<n)g(a+b n)

=l (4.5)

i(awb n- 1)C(n,a+b—n)].

The divergent (1) and C(1,a) appear here always in the combination
c(1)T(a+b-1)-C(l,a+b-1), (4.6)

which can be reexpressed in terms of convergent sums by the reflection identity (4.1).
In this way, we obtain

d -n-1
E(a,b)—(—l)b[Z( 1)”(“”’_’; );(n)g(mb_n)
n=2
+Z<a+b " 1)§(n,a+b—n) 4.7)
n=2
a+b-
( 0 )(g(a+b)+C(a+b 11))}

Here on the left-hand side we must assume that a > 1 if regularization is to be avoided.

4.2. Length three. Proceeding to sums of length three, again begin by exploiting
the triviality of g(©. Since there are two g'©) propagators, we have now several possi-
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b b b b

a C a Cc a Cc a C
(a) (b) (c) (d)

FIGURE 4.4. Diagrams related to C(a,b,c). The propagators without label
are g0 propagetors.

bilities. Figure 4.4 shows the “standard” sea shell diagram, representing C(a,b,c), as
well as the diagrams related to it by a change of direction of one or both of the g©
propagators. Those diagrams represent the quantities

(@) T(a,b,c),

(b) C(b,a,c)+C(b,c,a)+C(b,a+c),

(c) C(a,c,b)+C(c,a,b)+C(a+c,b),

(d) C(c,b,a).
Adding those diagrams in pairs to create §©’s one obtains the following four identi-
ties,

C(a,b,c)+C(b,a,c)+C(b,c,a)+C(b,a+c)+C(a+b,c)-C(a)C(b,c) =0, (4.8
¢(a,b,c)+ZC(a,c,b)+C(c,a,b)+C(a+c,b)+C(a,b+c)-C(c)C(a,b) =0, (4.9
C(b,a,c)+C(b,c,a)+C(c,b,a)+TC(b,a+c)+C(b+c,a)-C(c)C(b,a) =0, (4.10)
C(a,c,b)y+C(c,a,b)+C(c,b,a)+C(a+c,b)+C(c,a+b)-C(a)C(c,b)=0. (4.11)

These identities generalise the reflection identity (4.5). We call them permutation iden-
tities.

At length three, we can also make use of the three-point identities (3.14). We con-
sider again Figure 4.4a, and apply the first one of the three-point relations to the two
g'% propagators running into the root vertex. The result is the diagrammatic identity
shown in Figure 4.5. It can be translated, term by term, into the following € identity:

C(a,b,c)=-C(b,c,a)-C(c,a,b)+C(a+b+c)+C(a)C(b,c)

4.12
+CBC(e,@) + L a,b) — T@TBIT(C). @-12)

The identities (4.9) through (4.11) can be obtained by applying the permutations
b-a-c—-Db,a~c, b~ con (4.8). Taking the latter identity and applying all
permutations, we obtain six identities which can be written as

MZ=d, (4.13)

where Z = (C(a,b,c),C(a,c,b),...,C(c,b,a)) (all permutations of the arguments) and
d is a vector which contains only T values of length one and two. The rank of the
coefficient matrix M is 4, that is, four zeta values in Z can be expressed by the other two
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FIGURE 4.5. Diagrammatic identity derived from the three-point identity.

(and lower-length zeta values), for example, by C(a,b,c) and C(a,c,b). Taking into
account also relation (4.12) the coefficient matrix M gets more rows but the rank does
not change. Therefore, this relation is up to lower-length identities not independent
of (4.8). When two of the arguments a, b, ¢ coincide, say b = ¢, Z becomes (L (a,b,b),
C(b,a,b),C(b,b,a)) and the rank of M reduces to 2. For all arguments coinciding, the
rank of M is 1.

There is another possibility to derive an identity from Figure 4.4d which generalises
immediately to € values of larger length. Every g© propagator in Figure 4.4d can be
replaced by the reverted propagator according to

99 =—gW 45,1, (4.14)
This leads to a sum of diagrams where all occurring g'© propagators are directed
towards the root vertex. The resulting identity

C(c,b,a)=C(a,b,c)-C(a,b)C(c)+C(a,b+c)
+C(a)(—=C(b,c)+C(b)C(c)-TC(b+c)) (4.15)
+C(a+b,c)—Cla+b)C(c)+C(a+b+c)

can be obtained also by subtracting (4.8) from (4.11) and applying appropriately the
length-two identity (4.1), thus it is not a new identity.

Partial integrations yield additional identities. As for C values of length two, we
consider the more general figure (Figure 4.6) which evaluate to the numbers Gg xp,1c =
Gak.b,c1- Some of these numbers can be identified with € values:

Ga00,0,c = Gaop,eco=Cla,b,c), Gok,b,0c = Gokpeo=C(k)T(b,c). (4.16)

We startwith C(a,b,c) = Ga0,p,0.c First, we integrate by parts at the upper-right vertex
until b = 0 or ¢ = 0. The combinatorics is the same as in (4.4). The terms with ¢ = 0 can
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b

FIGURE 4.6. Auxiliary diagrams for partial integrations at length three.

(@) (b) (0)

(Oee

(d) (e)

0

FIGURE 4.7. Identity which proves that k and [ can be exchanged when the
upper propagator is zero. Diagram (c) is zero because no propagator goes
into the upper right vertex. Diagram (e) is zero for the same reason at the
right vertex.

be identified with € values. In the terms where b = 0, the two inner propagators can
be exchanged according to the identity depicted in Figure 4.7. After this exchange, we
can integrate by parts at the upper-left vertex until terms with a = 0 or k = 0 arise. In
terms of € values, we obtain

C(a,b,c) = (-1) Z [ Z (a;f):fl:z;?i;l) C(m,a+b+c-m-n,n)

n=1Lm=1
b+c-n
b+c-n-1\{a+b+c-m-n-1
_1\ym
+mZ=:1( Y ( b-1 )( a-1 )

(4.17)
xl_j(m)g(a+b+cmn,n)}

b
+ > (=1)°

n=1

b+c-n-1
c

1 )C(a,n,bﬂ:n),

where on the left-hand side we have again to require that a > 1. The divergent terms



140 U. MULLER AND C. SCHUBERT
for m = 1 appear always in a combination which can be eliminated by identity (4.9),
Z(1)C(a,b)-C(1,a,b) =C(a,b,1)+C(a,1,b)+C(a+1,b)+C(a,b+1). (4.18)

Alternatively we may after the first step, in the terms with b = 0, rather than inter-
changing the two inner propagators, those labelled “k” and “l” in Figure 4.6, instead
interchange propagators “k” and “c.” Proceeding in the same way as before we obtain
the following identity:

b
C(a,b,c) = (-1)° Z <b+c—n—1> C(a,n,b+c—-n)

o c—1
& (b+c-n-1\[{a-m+n-1
_ C
* 1’22( b1 )( n-1 )
n=1m=1

(4.19)

< eemfa-m+n-1\ (b-n+c-1
3 s en (TR ()

n=lm

xC(m)Ca-m+n,b—n+c).

Here again the terms involving a €(1,...) appear only in the combination (4.9) and
thus can be removed without the need for regularization.

4.3. Arbitrary length. All three different procedures which we have used for con-
structing multiple £ identities—partial integrations, reversion of g'© propagators,
and the use of the three-point identity—can be generalised to the arbitrary length
case without difficulty.

The generalisation of the permutation identities to an arbitrary length is based on
finding representations of sea shell diagrams with reverted inner g© propagators,
which are added in order to use the two-point relation (4.14). Consider first the sim-
plest case with one reverted propagator Figure 4.8. Figures 4.8b, 4.8c, and 4.8d can be
expressed immediately by € values. Figures 4.8a, 4.8b, and 4.8c represent the series

- 1
Ny np n] nz : 'nl

ny>--->n, >0,
Np41>--->n>0

By decomposing the summation range into regions where the n,’s are completely
ordered, we obtain a sum of € values which can be constructed as follows.

Denote by Mg, ay,a,, C {11}, 12}, {1,2} }41*92%412 the set of all (a1 + a2 + a12)-tuples
consisting of a, elements {1}, a, elements {2} and a;» elements {1,2}. Further, we
define amap (I=m-+m’)

N -
p%,m’- N XMmfa,m’fa,a — N a!

, , (4.21)
(kl,---ka;kwwl,---1kl;mlx---;mlfa) - (b1+bll"',blfl/l+blfa)l
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km km+l km km+1 km km+1
+ +
k2 kl—l k2kz—1 k2kl—1
k1 ki k1 k; ki ky
(@) (b) (0
km km+1
ki ki

(d)

FIGURE 4.8. Diagrammatic representation of permutation identities for ar-
bitrary length. The propagators without label are g(®) propagators.

where (by,...,b;_4) results from (mq,...,m;_,) by replacing {2} with 0, and {1} and
{1,2} with ki,...,k, (in this order); (b],...,b;_,) results from (my,...,m;_,) by re-
placing {1} with O, and {2} and {1,2} with ky,.1,...,k; (in this order). For example,

P2 (ki kosks, ka; {13, 11,2}, {2}) = (ky, k2 + k3, ka). (4.22)

With these definitions, the identity depicted in Figure 4.8 can be written as

min(m,l-m)

> ClemmKnkmikmi,. ki E))
a=0 EEMpm_q,l-m-a,a e (4.23)

=C (k1 o km)C(kms1,.--,ki).

The generalisation to the cases with more than one reverted propagator should
be obvious. But we note that in these cases the C values of maximal length appear
in combinations which can be constructed also from the identities (4.23). Thus, we
conjecture that all identities which are based on the reordering of summation ranges
are generated by (4.23).

Imitating the considerations in (4.13), we can write all permutation identities (4.23)
for fixed [ (but varying m), where the arguments of the length-one ¢ values are taken
from the set {ki,...,k;} in all possible orderings, in the form (4.13), where now the
components of Z consist of all different € values which result from C(kq,...,k;) by
permutations of the arguments; d contains only € values of length less than 1. As-
suming ki,...,k; mutually different, we found that the coefficient matrix M has rank
18 for [ = 4 and rank 96 for [ = 5. These results suggest that for length one the rank
is I'= (I—1)! and that the permutation identities suffice to express the I! considered
C values of length one by the subset of (I—1)! € values where one of the arguments
is held fixed at a certain position.
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To generalise the partial integration procedure from length three to length m, we
can proceed in various ways. For example, we can simply iterate the above exchange
of inner propagators. In the first step we apply the same partial integration as in the
length-three case to the rightmost vertex of the sea shell diagram (Figure 2.1). For
those terms in the result where k,,_; = 0 we make use of this new g© propagator
to interchange the adjacent inner propagators. Then we perform partial integrations
on the next-to-rightmost vertex until either k,,_» = 0 or the next inner propagator be-
comes the zero propagator. In the first case the procedure continues with another in-
terchange of inner propagators. After maximally m — 1 such propagator interchanges,
proceeding from right to left, the final step is reached, which is again the same as in
the length-three case.

In the first step we have the same ambiguity as before. Depending on its resolu-
tion, we arrive at a generalisation of either (4.18) or (4.19). We give here the formula
generalising (4.19),

Tk, km)
km-1
Km-1—Mm_1+n0m—1
_(_ km m m m
= (=D 2. ( km—1

Nm-1=1

ki
+(_1)km Z ZZ (kml_nml+nm_1> (ka_an +nm1_]—)

Nm-1=1 Np_2=1 km71_1 nm71_1

) C(kly---,kmfzanmflskmfl —Nm-1 +nm)

X C(kh v km3, M2, km—2 =2 + N1, k-1 —Nm—1 +nm)

m km
+(_1)km Z nzl ZS (kml—nml +nm—1) (kmz—nmz +nm1—1)
Np—1=1 npm_2=1ny_3=1 kim-1—-1 km-—2-1

y km-3—nm3+nm -
N2 —1

1
) Tk, km—s,Mm—-3,km—3 —Nm-3+Nm-2,...)

Nim-1 ng k1 m

km n—MNp+Np—1 ki—ni+nx—1

e §F LS S (e e
Np-1=1 nyy—_2=1 ny=1n;=1 n=2

><C(n1,k1—n1 +n2,...,km,1—nm,1 +1’lm)

Nm-1
—Np+Nps1—1
T Z Z Z ( 1)km ny 1—[ n n+1
kn—1
Np—1=1 nyy—_2=1 ny=1
XCT(n1)C (k1 —n1+n2,ke =Mz + N3, K1 = N1+ M),
(4.24)

where n,, = k;,. We also give the special case k;, = 1 of this formula which is partic-
ularly simple,

(k1. skm-1,1) =TT (k1,...,km-1)

mol ke (4.25)
- Z z C(kls---le—lakK+1_nK1nKakK+11---1km—])-

K=1 ng=1



A QUANTUM FIELD THEORETICAL REPRESENTATION ... 143

The terms involving C(1,...) can be removed by means of a special case of (4.23),
namely

CC(ki,....km-1) —C(1,k1,...,km-1)
1

.
= > [C(ktyeees kit ke + 1Koty k1) + € (Kyeeey ki Ly Kies 1,y K1) ]
K=1
(4.26)

=)

FIGURE 4.9. Modified sea shell diagram.

Up to here, the partial integrations were sequentially applied starting at the right-
most vertex and ending at the leftmost one. An interesting alternative is to do the
opposite. Consider Figure 4.9. As in the derivation of the other partial-integration
identities, this diagram represents C(k;)C (kz, ...,k ). On the other hand, we can use
partial integrations at the leftmost vertex until we have only terms where either k;
or k»; became 0. If k; = 0 then the resulting diagram represents a multiple ¢ value.
If k> = 0 then we exchange the adjacent inner propagators and repeat the whole pro-
cedure at the next-to-leftmost vertex. This continues until the rightmost vertex is
reached, where after the partial integrations all terms represent multiple C values.
The result is

C(k1)C(kz,....km)

k2
ko+ki—mn;—1
= > ( e )C(k2+k1—n1,n1,k3,...,km)

ny=1 kl_l
m-1 ng Ni-2 kel
kx+nao—na1 -1\ (ko1 +1e1 —Ne—1
VI YRR S 1 (e o
k=2 n1=1np=1  ng_1=1ng=12a=2 A k-1

XC(ka+no—ny,k3+n1—No, .o, Kip1 + Mo = N, N, K2, ko)
ng n Nm-2 m

Z zl mz 1—[ kx+nao—na1-1
+ e kA_l

ny=1ny=1 Np—1=1A=2
XC(k2+ng—ni,k3+n1—N2,...,km+ N2 = N1, Nm-1),

(4.27)

(10 = k1). The right-hand side contains no divergent terms when k1,k> > 2. For k; =1,
ko> > 2 it becomes finite when combined with (4.26).
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From our derivation clearly one would expect (4.24) and (4.27) to be equivalent.
And indeed, it is a matter of pure combinatorics to show that (4.24) becomes trivially
fulfilled if (4.27) is used on the right-hand side. Nevertheless, we suspect that the
form (4.27) may be more useful for the application of these formulas to the problem
of constructing a minimal basis of independent multiple € sums.

am €1

aAm-1

a

ay
FIGURE 4.10. Peacock diagram. The propagators without label are g(©) propagators.

Equation (4.27) is a special case of a class of identities derived from (weight-length)
shuffle algebras. In order to derive that whole class, consider Figure 4.10. It evaluates
to a number which we denote by

Z(at,...,am|b1,...,by|c1,...,ck) = Z(a,...,am| c1,...,cx | b1,...,by). (4.28)
Partial integrations at the top vertex yield, similarly to (4.4),

Z(...,am,0|lo1,b2,... |C1,C2,...)

1
b1+C1—V—1
= Z(...,am,b1+c1—v|v,bs,...|0,co,...
v_1< e -1 ) ( m, D1 +C1 | 2,.-.10,¢2,...) 4.29)
c1
bi+c1-v-1
+z<1 a-v )Z(...,am,b1+c1—v 0,bs,...|v,c2,...).
= b,-1
Considerations like in Figure 4.7 show
Z(al,...,am|0,b1,...|c1,...)=Z(a1,...,am|c1,...|O,b1,...)
(4.30)
=Z(a1,...,am,0{b1,...|c1,...).
Starting with
§(a1,...,am)§(b1,...,bn):Z(O|a1,...,am|bl,...,bn), (431)
and applying continually (4.29) and (4.30), we end up with terms of the form
Z(al,...,am|0|b1,...,bn)=Z(al,...,am|b1,...,hn|0)
(4.32)

= C(al,...,am,bl,...,bn).
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The resulting identities have the same form as the shuffle identities in the literature,
but here advantageously the binomial coefficients in (4.29) explicitly encode (in part)
the combinatorics implicit in the shuffle algebra.

Additional multiple T identities can be derived using the three-point identity (3.14).
Atlow lengths and levels it turns out that the multiple € identities obtained in this way
are not independent from the set of equations generated by the propagator reversions
and partial integrations. Whether this property holds true in general we do not know.

5. Discussion. In the present work we have established a novel representation of
multiple € sums in terms of Feynman diagrams in a 1 +0 dimensional quantum field
theory. We demonstrated the usefulness of this representation for the derivation of
identities between such sums. The encoding into Feynman diagrams proposed here
provides a very convenient book-keeping device for certain formal manipulations per-
formed on such sums, as our examples should have amply demonstrated.

Concerning the novelty of the identities derived here, the length-two identities pre-
sented in Section 4.1 are, of course, well known. At length three, the identities derived
by the partial integration procedure, (4.18) and (4.19), are similar, and presumably
equivalent, to the decomposition equations derived in [9] by explicit series manipula-
tions. Similarly, the permutation equations, equation (1) [9, equation (2)] coincide with
(4.9) in this paper. Equation (4.12) is contained as a special case in [21, Theorem 2.2].
However, we have not been able to locate in the literature an exact equivalent of our
length m identities (4.24) and (4.27). (The special case obtained by combining (4.25)
and (4.26) is [21, Theorem 5.1].) The only identities available for arbitrary lengths and
levels are those based on the shuffle algebra [6, 7, 8, 10, 26] and its generalisations
[23]. Of those the depth-length shuffle identities (which are also called stuffle identities
or *x products [22]) are obviously related, and in fact equivalent to our permutation
identities, as we have convinced ourselves. Similarly the weight-length shuffle iden-
tities are clearly related to our various partial integration identities. In this case, the
question of equivalence is more difficult and requires further investigation.

Note that we did not make use at all of the precise form of the path integral action.
Our considerations required the presence of all propagators g*', as well as of all the
vertices V71, however they did not determine the statistical weights with which they
should appear in the Feynman diagrams. Our choice of the weights for the propagators
is mainly motivated by the fact that it leads to a suggestive form for the free path
integral determinant. Namely, a simple application of the “Indet = trln” identity shows
that, formally,

InZ(0,A) = const+ » A”%. (5.1)
n=1

(This calculation may be seen as a chiral generalisation of the calculation of the Scalar
QED Euler-Heisenberg Lagrangian performed in [36].) Comparing this expression with
the well-known formula for the logarithm of the I' function

I(1+x) —exp[—yx+ > (_yll)ng(n)x"}, (5.2)
n=2
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we see that we can identify the free partition function with the I' function under
the assumption that the ill-defined € (1) appearing in (5.1) is renormalised to Euler’s
constant y,

Zrenorm (0,A) = const xI'(1 —A). (5.3)

Considering the identities y = limy .o (> ;_1(1/k) —Inn) and >, (1/k¢) = (1/€) +
y +O(€) this assumption seems quite natural. Similarly the total propagator becomes
relatively simple. Using the integral representation (2.7) of the polylogarithm, it is
easily shown that

212}\
1-A

prz= > Ak@mi)kgl) = g\ + oF1(1,1-2;2-2;212). (5.4)

k=0

For the interaction term there seems to be no such preferred choice. A question
of obvious interest (but equally obvious difficulty) is whether nontrivial interaction
potentials V(g,g) exist such that the £-model would be exactly solvable.

Recently the following generalisation of Euler-Zagier sums (1.3) has attracted some
attention,

C(Kiyeee Kn; Tty Om) = D ol om” (5.5)
yees K 0140y 3 o ?

ny>np>->u>0 Ny - Nm

where 0; = =1. Those alternating Euler-Zagier sums arise naturally in the calculation
of ultraviolet divergences in renormalisable quantum field theories, and in the ap-
plication of knot theory to the classification of those divergences [13]. At the same
time, the inclusion of alternating Euler-Zagier sums seems to simplify the problem of
reducing the set of all such sums to a basic set via multiple C identities [10]. (For a
tabulation of alternating series see [5].)

More generally, arbitrary Nth roots of unity in place of the o have been considered
in connection with the study of mixed Tate motives over SpecZ [18, 34]. Those phase
factors can be easily accommodated in the €-model. To generate a phase factor o =
e®™is the propagator (2.1) has to be simply replaced by

e2n1(n+3)u12

9 (ugn) = : (5.6)
12) nZ::l (2min)*

On the path integral level this can be achieved by changing from periodic to twisted
boundary conditions, x(1) = ox(0), and replacing 0 by 0 — 27ris.
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have also been made to develop financial engineering mod-
els using intelligent computing approaches. For example, an
artificial neural network (ANN) is a nonparametric estima-
tion technique which does not make any distributional as-
sumptions regarding the underlying asset. Instead, ANN ap-
proach develops a model using sets of unknown parameters
and lets the optimization routine seek the best fitting pa-
rameters to obtain the desired results. The main aim of this
special issue is not to merely illustrate the superior perfor-
mance of a new intelligent computational method, but also
to demonstrate how it can be used effectively in a financial
engineering environment to improve and facilitate financial
decision making. In this sense, the submissions should es-
pecially address how the results of estimated computational
models (e.g., ANN, support vector machines, evolutionary
algorithm, and fuzzy models) can be used to develop intelli-
gent, easy-to-use, and/or comprehensible computational sys-
tems (e.g., decision support systems, agent-based system, and
web-based systems)
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ing, multiagent learning

o Application fields: asset valuation and prediction, as-
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