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1. Introduction. In [8, 9, 10], Ying introduced the concept of fuzzifying topology
with the semantic method of continuous valued logic. All the conventions in [8, 9, 10]
are good in this paper. Andrijevic [3] introduced the concepts of b-open sets in general
topology. We note that the concepts of y-open sets and y-continuity are considered
by Hanafy [4] to fuzzy topology. In [7], the concepts of fuzzy y-open sets and fuzzy
y-continuity are introduced and studied in fuzzifying topology. In the present paper,
we define and study the concepts of cy-open sets and cy-continuity in fuzzifying
topology. The main purpose of the present paper is to obtain decompositions of fuzzy
continuity in fuzzifying topology by making use of fuzzy y-continuity and fuzzy cy-
continuity.

2. Preliminaries. We present the fuzzy logical and corresponding set theoretical
notations due to Ying [8, 9].

For any formulae @, the symbol [ ] means the truth value of @, where the set of
truth values is the unit interval [0,1]. We write = @ if [ ] = 1 for any interpretation.
The original formulae of fuzzy logical and corresponding set theoretical notations are

(1) (@) [¢] = x(x € [0,1]);

b) [ Aypl:=min([@],[y]);
© [ - yl:=min(1,1-[@]+[@]).

)If A€ F(X), [x € Al:= A(x).

(3) If X is the universe of discourse, [Vx@(x)] :=infrex[@(x)].

In addition the following derived formulae are given:

1) [~@l:=[p—-0]=1-[@];

@) [evyl:=[~(—@Ar-y)]:=max([@],[y]);

@) [p-vl=[(p-Y)r(y—-@)];

@ [epary]:=[~(@—-~y)]:i=max(0,[@]+[y]-1);

O) levyl:=[~@—-yl=[~(pA-y)] =min(l,[@]+[Y]);

6) [3x@(x)]:=[~VXx7@(x)] = supyex[@(x)];

(7) if A,B € #(X), then
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(@ [AcB]:=[Vx(x €A —x €B)] =infyexmin(1,1-A(x) +B(x));
(b) [A=Bl:=[(AcB)A(B<cA];
(© [A=B]:=[(AcB)A(B<cA)],
where % (X) is the family of all fuzzy sets in X.
We do not often distinguish the connectives and their truth value functions and
state strictly our results on formalization as Ying does. We now give the following
definitions and results in fuzzifying topology which are used in the sequel.

N

DEFINITION 2.1 (see [8]). Let X be a universe of discourse, P(X) the family of
subsets of X, and T € %(P (X)) satisfy the following conditions:

1 7(X)=1,7(Q0) =1;

(2) forany A, B, T(ANB) > T(A) AT(B);

(3) forany {Ax:A € A}, T(UaeaAn) = Naen T(AR).
Then T is called a fuzzifying topology and (X, T) is a fuzzifying topological space.

DEFINITION 2.2 (see [8]). The family of fuzzifying closed sets, denoted by F €
F(P(X)),is defined as A€ F:= X ~ A € T, where X ~ A is the complement of A.

DEFINITION 2.3 (see [8]). Let x € X. The neighborhood system of x, denoted by
Ny € F(P(X)), is defined as Ny (A) = sup,cpca T(B).

DEFINITION 2.4 (see [8, Lemma 5.2]). The closure A of A is defined as A(x) =
1-Ny(X~A).

In [8, Theorem 5.3], Ying proved that the closure ": P(X) — %(X) is a fuzzi_fy-
ing closure operator (see [8, Definiton 5.3]) since its extension : #(X) — F(X), A =
uae[o,l]aﬁm A € F(X) satisfies the following Kuratowski closure axioms:

1) 2 =0;

(2) forany A € F(X), = A C A;

(3) forany A,B € F(X), = AUB = AUB;

(4) for any A € F(X), (A) c A,
where Ay = {x:A(x) > «} is the x-cut of A and xA(x) = x A A(x).

DEFINITION 2.5 (see [9]). For any A € P(X), the interior of A, denoted by A° €
F(P(X)), is defined as follows: A°(x) = Ny (A).

From [8, Lemma 3.1] and the definitions of N, (A) and A° for A € P(X) we have
T(A) =infyecq A°(x).

DEFINITION 2.6 (see [5]). Forany A € F(X), = (A)° =X ~ (X ~ A).
LEMMA 2.7 (see [5]). If[A< Bl =1, then

(1) I=ACB
(2) = (A)° < (B)".

LEMMA 2.8 (see [5]). Let (X,T) be a fuzzifying topological space. For any A, B;
1) =EX°=X;

() = (A)° cA;

3) = (AnB)° = (A)°n(B)°;

@) = (A2 (A).
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LEMMA 2.9 (see [5]). Let (X, T) be a fuzzifying topological space. For any A € F(X),
1) EX~A)y =X~A);
(2 EX~(A)=X~A)".

LEMMA 2.10 (s
(1) = (A)° ¢
(2 =(A)—°c

ee [2,5]). If[A<cB]=1,then
(B)>~;
(B)~.

DEFINITION 2.11. Let (X, T) be a fuzzifying topological space.

(1) The family of fuzzifying cx-open [6] (resp., csemi-open [5], cpre-open [2], ¢ 8-
open [1]) sets, denoted by cxT (resp., cST, cPT,cBT) € F(P(X)), is defined as follows:
A € cxT (resp., cST,cPT,cBT):=Vx(x € AnA°°(resp.,, ANA° ", ANA°,ANA™°") —
X € A°).

(2) The family of fuzzifying cx-closed [6] (resp., csemi-closed [5], cpre-closed [2],
cB-closed [1]) sets, denoted by cxF (resp., cSF, cPF, cSF) € ¥(P (X)), is defined as
follows: A € cxF (resp., cSF, cPF,cBF):=X ~ A € cxt (resp., cST, cPT, cBT).

DEFINITION 2.12 (see [10]). Let (X, T) be a fuzzifying topological space.

(1) The family of fuzzifying y-open sets, denoted by yT € #(P (X)), is defined as
follows: A€ yT:=Vx(x €A—-x €A UA°),

(2) The family of fuzzifying y-closed sets, denoted by yF € (P (X)), is defined as
follows: Ac yF:=X ~A € yT,

(3) Let (X, 1), (Y,U) be two fuzzifying topological spaces. A unary fuzzy predicate
yC € F(Y¥) called fuzzy y-continuity, is given as yC(f) := Vu (u € U — f~H(u) €
yT).

LEMMA 2.13 (see [7]). (1) ET<yT;(2) =F < yF.

DEFINITION 2.14 (see [10]). Let (X,T) and (Y,U) be two fuzzifying topological
spaces. A unary fuzzy predicate C € % (Y?¥) called fuzzy continuity, is given as C(f) :=
Vu (uel— f~Hu)er).

3. Fuzzifying cy-open sets

DEFINITION 3.1. Let (X, T) be a fuzzifying topological space.

(1) The family of fuzzifying cy-open sets, denoted by cyT € % (P (X)), is defined as
Acecyt:=Vx (x€eAn(A°"UA™°) — A°).

(2) The family of fuzzifying cy-closed sets, denoted by cyF € %(P (X)), is defined
asAccyF:=X~AccyrT.

LEMMA 3.2. Forany o,B,y,0 €I, (1-x+B)A(1-y+0) <1—(xAy)+(BAS).

THEOREM 3.3. Let (X,T) be a fuzzifying topological space, then
1) cyt(X) =1, cyt(@) =1;
(2) cyt(AnB) =cyT(A)AcyT(B).

PROOF. The proof of (1) is straightforward.
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(2) From Lemma 3.2, we have
cyT(A)AcyT(B)
= ig‘ 1-(A"UA ) (x)+A (X)) A irelil; (1-(B°"UB™°)(x)+B°(x))

inf ((1- (A" UA™)(x)+A°(x)) A (1— (B>~ UB~°)(x) +B°(x)))

XEANB (3.1)
< éIAI;B(l —((A"UA”)N (B UB™))(x)+(A°NB°)(x))
< 3&3 (1-((ANB)>"U(ANB)™°)(x)+(ANB)°(x)) = cyT(ANB). o

THEOREM 3.4. Let (X, T) be a fuzzifying topological space, then
(1) cyF(X) =1,cyF(©)=1;
(2) cyF(AUB) = cyF(A) AcyF(B).

PROOF. From Theorem 3.3 the proof is obtained. a

THEOREM 3.5. Let (X,T) be a fuzzifying topological space, then

M@ETccat;b)EcPtccaTt;(0EcSTScat;(d) EcyTtccST; () ECyT <
cPt;f)EcBrccyT;(@ ETSCyT.

(2) (@) E F € cxF; (b) E cPF < cxF; (c) E ¢SF < cxF; (d) E cyF < cSF; (e) e cyF c
cPF;(f) e cBF ccyF;(g) = F ccyF.

PROOF. From the properties of the interior and closure operations and [9, Theo-
rem 2.2(3)],
MD@[AeT]=[AcA°|<[ANA°°*cA°|=[AecaT];
(b) [A€cPT]=[ANA " cCcA°]<[ANA°°cA°]=[A€caT];
(€ [AecST]=[ANA° " cA°]<[ANA° " cA°|=[AecxT];
(d) cyT(A) = infyea(l —max(A°~ (x),A7°(x)) + A°(x)) <infyeca(l —A°"(x) +
A°(x)) =cST(A);
(e) cyT(A) =infycs (1 —max(A° (x),A™°(x)) + A°(x)) < infyca(l—A°(x) +
A®(x)) = cPT(A);
(f) cBT(A) =infyca(l1-A"° (x)+A°(x)) <infyea(l —max(A° (x),A °(x)) +
A®(x)) =cyT(A);
(g [AceT]=[AcA°]<[AN(APUA ) cA°]=[AecyT].
(2) The proof is obtained from (1). |

REMARK 3.6. In crisp setting, that is, in case that the underlying fuzzifying topol-
ogy is the ordinary topology, we have

EAcyTAAecyT — AET. (3.2)

Of course the implication “—” in (3.2) is either the Lukaciewicz’s implication or the
Boolean’s implication since these implications are identical in crisp setting. But in
fuzzifying setting the statement (3.2) may not be true as illustrated by the following
counterexample.

COUNTEREXAMPLE 3.7. Let X = {a,b,c} and let T be a fuzzifying topology on X
defined as follows: T(X) = (@) = 1({a}) = T({a,c}) = 1; T({b}) = T({a,b}) = 0;
and T({c}) = T({b,c}) = 1/8. From the definitions of the interior and the closure of a
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subset of X and the interior and the closure of a fuzzy set of X we have the following:
yt({a,b}) =7/8,cyt({a,b}) =1/8.

THEOREM 3.8. Let (X,T) be a fuzzifying topological space.
1) EAeT—-(AcyTAAccyT);
(2) ifl[Aeyt]l=10or[AccyT]=1,thenEAcT~ (AcyTAAECYT).

PROOF. (1) This follows from Theorem 3.5(g) and Lemma 2.13(1).

(2) Assume that [A € yT] = 1, then for each x € A, we have max(A°~ (x),A™°(x)) =
1 and so for each x € A, 1 —-max(A° (x),A °(x))+A°(x) = A°(x). Thus, [A € yT] A
[AccyTt]=[AccyT] =infyrea(l —max(A° (x),A °(x))+A°(x)) =infycs A°(Xx) =
[AeT].Now, assume that[AecyT]=1,thenforeachx €A, 1-max(A° (x),A™°(x))+
A°(x) =1 and so for each x € A, max(A° (x),A °(x)) = A°(x).

Thus,

[AeyTIAn[AecyT]
3.3)

=[A€yT]=inf max (A° (x),A °(x)) = inf A°(x) =[A e T].
X€EA X€EA O

THEOREM 3.9. Let (X, T) be a fuzzifying topological space. Then = (A€ yTAA €
cyT) - AeT.

PROOF.

[A e yT/_\A ecyT]
= Inf max (A" (x),A™" (x)) A inf (1 —max (A" (x), A7 (x)) + A" (x))
= max (O,irelgmax (A7 (x),A™°(x)) +;i<2£ (1-max (A° (x),A™°(x))+A°(x))—-1)
< )i(l’GIfA‘AO(X) =[AeT].

(3.4)
O

4. Fuzzifying cy-neighborhood structure

DEFINITION 4.1. Let x € X. The cy-neighborhood system of x, denoted by cyN, €
F(P (X)), is defined as cyNx(A) = SUp,cpca CYT(B).

THEOREM 4.2. A mapping cyN : X — FN(P(X)), x — cyNx, where FN (P (X)) is the
set of all normal fuzzy subsets of P(X), has the following properties:

(1) EA€cyNy - x€A;

(2) EA<B—- (AecyNy - BecyNy);

(3) EAecyNxABecyNy - ANB € cyNy.
Conversely, if a mapping cy N satisfies (2) and (3), then cyN assigns a fuzzifying topol-
ogy on X which is denoted by T.yn € #(P(X)) and defined as

A€eTyn:=Vx (x€A— AeccyNy). (4.1)

PROOF. (1)If [A € cyNy] = SupyeycaCyT(H) > 0, then there exists H. such that
x € H, < A. Now, we have [x € A] = 1. Therefore, [A € cyN,] < [x € A] always holds.
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(2) The proof is immediate.
(3) From Theorem 3.3(2), we have

[AnBecyNy]= sup cyt(H)= sup cyt(H nHy)
xeHcANB xeHjcA,
X€H»<B
> sup cyT(Hi)AcyT(H?)
X€EH]CA,
xe€Hp<B 4.2)

= sup cyT(Hi)A sup cyT(H>)
xX€eH1cA X€H»<B

=[A€cyNyAB€ECcyNy].

Conversely, we need to prove that T,yn(A) = infrcacyNx(A) is a fuzzifying topol-
ogy. From [8, Theorem 3.2] and since 7.,y satisfies properties (2) and (3), Tcyn is a
fuzzifying topology. a

THEOREM 4.3. Let (X, T) be a fuzzifying topological space. Then & cyT S Teyn.
PROOF. LetBeP(X); Teyn(B) =infxcpcyNyx(B) =infyxepSupycacpcyT(A) =cyT(B).
Od
5. Fuzzifying cy-derived sets, fuzzifying cy-closure, and fuzzifying
cy-interior

DEFINITION 5.1. Let (X,T) be a fuzzifying topological space. The fuzzifying cy-
derived set of A, denoted by cy-d € F(P (X)), is defined as

cy-d(A) = BMA%{}):@ (1-cyN«(B)). (5.1)

LEMMA 5.2. cy-d(A)(x) =1—-cyN,((X ~A)u{x}).
PROOF. From Theorem 4.2(2), we have

cy-d(A)=1- sup cYNx(B)

Bn(A-{x})=0

=1- sup cyYNx(B) (5.2)
Be((X~A)u{x})

=1-cyNy((X ~A)u{x}). O

THEOREM 5.3. Forany A, A€ FTeyny < cy-d(A) € A.
PROOF. From Lemma 5.2, we have

[ey-d(A) A= inf (1-cy-d(A)(x)) = inf cyNe((X~A)uix})

(5.3)
= inf cyNx((X~A)) =[X~A€Tyn]| =[AEFTeyn].
xXeX~A 0

DEFINITION 5.4. Let (X, T) be a fuzzifying topological space. The cy-closure of A
is denoted and defined as follows: cy-cl(A) (x) = infy¢p-a (1 —cyF(B)).
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THEOREM 5.5. (1) cy-cl(A)(x) =1—cyNy(X ~ A);
(2) Ecy-cd(@) =T;
(3) EAccy-cl(A).

PROOE. (1) cy-cl(A)(x)=infy¢psa(1—cyF(B)) =infxex-pex~a(1-cyT(X ~ B))=
1=SuPyex-pex-aCYT(X ~B) =1-CcyNx(X ~ A).

2) cy-cl(@)(x) =1—-cyNx(X ~ Q) =0.

(3) It is clear that for any A € P(X) and any x € X, if x ¢ A, then cyN,(A) = 0. If
x €A, thency-cl(A)(x)=1—cyNy(X ~A)=1-0=1.Then [Accy-cl(A)]=1. O

THEOREM 5.6. For any x and A;

(1) Ecy-cl(A) =cy-d(A)UA;

(2) Execy-cl(A) « VB (BecyNy - ANnB + @);
(3) FA=cy-cl(A) = A€ FTeyn.

PROOF. (1) Applying Lemma 5.2 and Theorem 5.5(3), we have
x €cy-d(A)UA =max (1-cyNyx((X ~A)u{x}),A(x)) =cy-cl(A)(x). (5.4)
2)[VB (BecyNy — AnB # @)] =infgcx-a(1 —=cyNx(B)) =1 —-cyN,(X ~ A) =

[x € cy-cl(A)].
(3) From Theorem 5.5(1), we have

[A=cy-cl(A)] = inf (1-cy-cl(A)(x))

xeX~A

5.5
= ingcyNX(X~A)= [(X ~A) € FTeyn] =[A € Teyn]- -2
XEX~

THEOREM 5.7. For any A and B, = B=cy-cl(A) — B € FT¢yn.

PROOF. If [A < B] = 0, then [B=cy-cl(A)] = 0. Now, we suppose [A € B] =1,
then we have [B < cy-cl(A)] = 1 — suPyep-aCYNx(X ~ A) and [cy-cl(A) < B]
infycx-pcyNy(X ~ A). So,

[B=cy-cl(A)] = max (0, inf cyNy(X ~A)- sup cyNX(X~A)). (5.6)
xeX~B XEB~A

If [B=cy-cl(A)] > t, then infyex-gCyNx (X ~ A) > t +Sup,cp_4 CYNx (X ~ A). For any
X € X ~B, SUDyccex-aCYT(C) >t +SUPyep.a CYNx (X ~ A), that is, there exists Cyx
such that x € Cx € X ~ A and cyT(Cx) > t 4+ SupPyep-4 CYNx (X ~ A). Now, we want
to prove that Cy € X ~ B. If not, then there exists x’ € B ~ A such that x" € Cy.
Hence, we can obtain that sup,ep .4 CYNx(X ~ A) = cyNy (X ~A) = cyT(Cyx) >t +
SUPyep-a CYNyx (X ~ A). This is a contradiction. Therefore, FT.yn(B) = Teyn(X ~B) =
infyex~pCYNx(X ~B) > infxex-pcyT(Cyx) >t +SUPycp.aCYNx (X ~ A) > t. Since t is
arbitrary, it holds that [B=y-cl(A)] < [B € FTeyn]. O

DEFINITION 5.8. Let (X,T) be a fuzzifying topological space. For any A < X, the
cy-interior of A is given as follows: cy-int(A) (x) = cyNx(A).
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THEOREM 5.9. For any x, A, and B,

(1) EBeTynABS A— Bccy-int(A);

(2) EA=cy-int(A) =« A€ Teyn;

3) Execy-int(A) o x e Arx e (X ~cy-d(X ~A));
4) Ecy-int(A) =X ~cy-cl(X ~ A);

(5) & B=cy-int(A) —» B € Tcyn;

(6) (@) =cy-int(X) =X, (b) =cy-int(A) < A.

PROOF. (1)If B¢ A, then [B € Teyn AB<S Al =0.1f B < A, then
[B c cy-int(A)] = inf cy-int(A) (x)
XEB
= inf cyNy(A) > inf cyNy (B) (5.7)
xX€eB xX€eB
=[BEeTeyn] =[BETynAB S Al

2)

[A=cy-int(A)] = min|( inf cy-int(A)(x), inf (1-cy-int(A)(x))
(xeA xeX~A ) (5.8)
= irelgcy-int(A)(x) = irelgcny(A) =[A € Teyn].

(3)Ifx ¢ A, then [x ecy-int(A)]=0=[x e Arx e (X ~cy-d(X ~A))].If x €A,
then [x € cy-d(X ~ A)] =1 —-cyNx(AU{x}) =1-cyNyx(A) =1—-cy-int(A)(x), so
that [ x e AAx e (X ~cy-d(X ~A))] =[x €cy-int(A)].

(4) It follows from Theorem 5.5(1).

(5) From (4) and Theorem 5.7, we have

[B=cy-int(A)] = [X ~B=cy-cdl(X ~A)] < [X ~BE€FTeyn] =[BE Teyn].  (5.9)

(6) (a) It is obtained from (4) above and from Theorem 5.5(2).
(b) It is obtained from (3) above. O

6. Fuzzifying cy-continuous functions

DEFINITION 6.1. Let (X,7) and (Y,U) be two fuzzifying topological spaces. For
any f € YX, a unary fuzzy predicates cyC € F(Y?), called cy-continuity, is given as

cyC(f):=Vu (ueU— fYu)ccyr). 6.1)

DEFINITION 6.2. Let (X,7) and (Y,U) be two fuzzifying topological spaces. For
any f € Y, we define the unary fuzzy predicates y; € #(Y*) where j =1,2,...,5 as
follows:
(1) y1(f):= VB (B€Fy — f 1(B) € cyFy), where Fy is the family of closed subsets
of Y and cyFy is the family of cy-closed subsets of X;

(2) y2(f) = VxVu (u € Nyx) — f~1(u) € cyNy), where N is the neighborhood
system of Y and cyN is the cy-neighborhood system of X;

(3) y3(f):==VxVu (U €Np) - Iv(f(V) Su—v ecyNy));

(@) ya(f) == VA(f(cy-clx(A)) = cly (f(A)));
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(5) y5(f):=VB(cy-clx(f~1(B)) = f~(cly(B))).
THEOREM 6.3. (1) = fecyC~ f € yi;

2 EfecyC— fey;
() Ef€ys— feyjforj=3,4,5.

PROOF. (1) We prove that [f ecyCl=1[f € y1]

[f €] =F£(fy)min(1,1 —Fy(F) +cyFx (f~1(F)))
— 3 : _ _ - f£-1
—Fégl(fy}mm(l,l U(Y-F)+cyt(X ~ f~1(F)))

— ; _ _ 1y _
7F£(fy)mm(1,1 U(Y-F)+cyt(f~"(Y-F))) (6.2)

s . _ -1
= ug}(fy)mm(l,l Uu) +cyt(f 1))

[f ecyCl.

(2) We prove that y»(f) = cyC(f). If Nrx) (1) < cyNy(f~'(u)), the result holds.
Suppose Ny(x) (1) > cyNy (f~1(u)). Itis clear thatif f(x) € Acuthenx € f~1(A)
f~(u). Then,

Nioo(uw) —cyNe(f"'(u)) = sup U(A)— sup cyT(B)
fx)eAcu xeBef~1(u)

< sup UA) - sup cyt(f1(4) (6.3)

f(x)eAcu f(x)eAcu
< sup (UA) -cyT(f1(A)).
f(x)eAcu

S0, 1 = Nfx)(u) + cyNy (f~H(u)) > inf f(xyeacu (1 —U(A) +cyT(f~1(A))) and thus

min (1,1-Nyeo () +eyNe(f ' @) = inf - min (1,1-U(A)+eyT (£~ (4)))

> igl(fy)min(l,l—U(v)+cyT(f’1(v))) (6.4)

=cyC(f).

Hence, infyeyinf,epyymin(1,1 - Ny () +cyNx (f 1 (u))) = [f € cyCl.
(3) (@) We prove that = f € y» — f € y3.Since cy N, is monotonous (Theorem 4.2(2)),
itis clear that sup,cp(x), f(v)cu C¥Nx (V) =SUDyep(x), ve f-1 ) CYNx (V) = cyNx (f 1 (m)).
Then,

y3(f) =1inf inf min(1,1-Nfu(u)+ sup cyNx(v))

xXeEXueP(Y) veP(X). f(v)cu (6 5)
=inf inf min(1,1-N N, (1 - _ )
inf inf min( foo (W) +cyNe (f 1)) = y2(f)

(b) We prove that = f € y4 = f € ys.



60 T. NOIRI AND O. R. SAYED

First, for each B € P(Y), there exists A € P(X) such that f~1(B) = A and f(A) c B.
So, [cy-clx(f1(B)) = f1(cly(B))] = [cy-clx(A) = f~(cly(f(A)))]. Hence,

ys(f) = nf [ey-cly (f71(B) < £ (cly (B)]
(6.6)
> mf [cy-ch(A) c f 1 (cy (f(A))] = ya(f).

AeP

Second, for each A € P(X), there exists B € P(Y) such that f(A) =B and f~1(B) 2
A. Hence, [cy-clx(f~1(B)) = f(cly(B))] < [cy-clx(A) = f~!(cly (f(A)))]. Thus,

— _ c £-1
ys(f) = inf fey-clx(4) € f (cly (f(A)))]
. ] . o

dep(;)l?g:f(m[w cx (f1(B)) = f 1 (cdy(B))] 6.7)

> Beig(fy) [cy-cly (f71(B)) < fFH(cdy(B))] = y5(f).
(c) We prove that = f € y5 < f € y»; from Theorem 5.5(1),
ys(f) = VB(cy-clx (f71(B)) = f ' (cly(B)))

— i i i _ _ - -1 _ . _
—Belg(fy)}ggmm(l,l (1=cyNx(X ~f7"(B))) +1=Nsx) (Y ~B))

(6.8)
_ 1

—Belrr}(fy);relgmln(l 1=Ngu) (Y ~B)+cyN(X ~ f71(B)))

_ -1 _

—uég(fy);relgmm(l 1 =Ny (u) +cyNx (fH(w)) = y2(f). 0

REMARK 6.4. In the following theorem, we indicate the fuzzifying topologies with
respect to which we evaluate the degree to which f is continuous or ¢y C-continuous.
Thus, the symbols (7,U)-C(f), (Teyn,U)-C(f), (T,Usyn)-cyC(f), and so forth, will
be understood.

Applying Theorems 3.5(g) and 4.3, one can deduce the following theorem.
THEOREM 6.5. (1) = f € (T,Ucyn)-C — f e (T,U)-C;
2 =fe(r,U)cyC—fe (Teyn,U)-C;
3) Efe(t,U)C— fe(t,U)cyC.
7. Decompositions of fuzzy continuity in fuzzifying topology
THEOREM 7.1. Let (X,T) and (Y,U) be two fuzzifying topological spaces. For any
fevX,
= C(f) — (yC(f) neyC(f). 7.1)

PROOF. The proof is obtained from Lemma 2.13(1) and Theorem 3.5(g). O

REMARK 7.2. In crisp setting, that is, in the case that the underlying fuzzifying
topology is the ordinary topology, one can have = (yC(f) AcyC(f)) — C(f).
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But this statement may not be true in general in fuzzifying topology as illustrated
by the following counterexample.

COUNTEREXAMPLE 7.3. Let (X,T) be the fuzzifying topological space defined in
Counterexample 3.7. Consider the identity function f from (X, T) onto (X, o), where o
is a fuzzifying topology on X defined as follows:

U(A):{l, A€ {X,0,{a,b}}, 72)

0, otherwise.

Then, 7/8A1/8 = yC(f) AcyC(f) £ C(f) = 0.

THEOREM 7.4. Let (X,T) and (Y,U) be two fuzzifying topological spaces. For any
feYX,

EC(f) — (YC(f) — cyC())). (7.3)

PROOF. [yC(f)—cyC(f)]=min(1,1-yC(f)+cyC(f)) = yC(f)ncyC(f).Also,
[cyC(f) = yC(f)] = min(1,1 — cyC(f) + yC(f)) = yC(f) A cyC(f). Then from
Theorem 7.1 we have [yC(f) AcyC(f)] = C(f) and so the result holds. |

THEOREM 7.5. Let (X,T) and (Y,U) be two fuzzifying topological spaces and let
fe Y Iflyt(f Y(u)l=1or[cyt(f~Y(u))1=1 foreachu € P(Y), then= C(f) -~
(YC(f) neyC(f)).

PROOF. We need to prove that C(f) = yC(f) AcyC(f). Applying Theorem 3.8(2),
we have

yC(f) ncyC(f)

s . _ -1 : : _ -1
—ugul(fy)mln(l,l Uw+yt(f (u)))/\ugpl(fy)nnn(l,l U +cyTt(f1(w))

_ ; _ -1 _ -1
= dnf min(1,(1-U)+y7(f @) A1-Uw) +eyt(f7 w))) (7.4)

= inf min(1,1-U@)+ (y7(f"w) Acyt(f1(u))))

ueP(Y)

= ig)l(fy)min(l,l—U(u) +7(f 1 (w)) = C(f).
" O
THEOREM 7.6. Let (X,T) and (Y,U) be two fuzzifying topological spaces and let
fevX,
(D) iflyt(f " (w))]1=1 foreachu € P(Y), then = yC(f) — (cyC(f) = C(f)),
() iflcyt(f~"(w))]1=1 for eachu € P(Y), then = cyC(f) — (yC(f) = C(f)).

PROOF. (1)Since [yT(f '(u))]=1andso[f'(u) < ((f1(u) - u(f 1 u) )=
1, then [(f~Y(w) N ((f~L )" u(f~Hw)™)) = (f~Hw)T=1f1uw < (fHwu)°].
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Thus,
cyC(f) = inf min(1,1-Uu)+cyt(f1u)))

ueP()

= inf min(1,1-U@)+[(f" ) n ((f 7 w) " u(fw) )N e (fFw)])

ueP()

= inf min(1,1-U)+[f ) < (fw)°])
ueP(y)

= Eirlg(fy)min(l,l*U(u)+T(f’1(u))) =C(f).

(7.5)

(2) Since [cyT(f*(u))] = 1, one can deduce that ((f~'(u))°~ U (f1(u))~°) =
(f~'(w))*. So,

yC(f) = inf min(1,1-U(u)+yt(f(u)))
ueP(y)

= inf min(1,1-Uw)+[f 7w < ((f ) u(fw) "))

ueP(y)
- ueir}}(fy)min(l,l U +[f 1w e (fFtw)])
= E111')1(fy)mjn(1,1 —Um)+1(f ') =Cf).
(7.6)
O

THEOREM 7.7. Let (X,T), (Y,U), and (Z,V) be three fuzzifying topological spaces.
Forany feYXandg € Z?Y,

(1) =EcyC(f) = (C(g) —cyC(gof));

(2) EC(g) — (cyC(g) — cyC(gof)).

PROOF. (1) We prove that [cyC(f)] < [(C(g) — cyC(g o f)]. If [C(g)] <
[cyC(gof)], then the result holds. If [C(g)] > [cyC(g o f)], then we have

[C(g)]-[cyC(gef)]= vei%(fz)min(l,l V) +U(g tw)))

- ing?z)min(l,l ~V()+cyT(goe f)t(v))

vep

< sup (U(g'(w))—cyt(gef)t(v)) 7
veP(2)
< sup (Uu)—cyt(f tw)).
ueP(Y)
Therefore,
[C(g) — cyC(gof)]=min(1,1-[C(g)]+[cyC(gef)])
(7.8)

> ueigfy)min(l,l—U(u) +eyT(f ) =cyC(f).
(2) Since the conjunction A is commutative, from (1) above, one can deduce that
[C(g) — (cyC(f) — cyC(gof))] =[~(C(@) AcyC(f) A—cyClgef))]
=[=(cyC(f)nC(g) A=cyC(gof))] (7.9

=[cyC(f) — (C(g) — cyC(gof))]=1. O
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