
IJMMS 31:1 (2002) 43–49
PII. S0161171202108222

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

APPLICATION OF UNIFORM ASYMPTOTICS TO THE FIFTH
PAINLEVÉ TRANSCENDANT

YOUMIN LU and ZHOUDE SHAO

Received 30 August 2001

We apply the uniform asymptotics method to the fifth Painlevé transcendants, find its
asymptotics of the form y =−1+t−1/2A(t) as t→∞ along the positive t-axis, and obtain
the corresponding monodromy data.
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1. Introduction. We study the general fifth Painlevé equation
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where α, β, γ, and δ are parameters, and its solution of the form

y(t)=−1+4t−1/2A(t),

y ′(t)=−2t−3/2A(t)+4t−1/2A′(t)= 4t−1/2A′(t)+O(t−3/2), (1.2)

with A(t)=O(1) as t→∞.

The fifth Painlevé equation (1.1) can be obtained as the compatibility condition of

the following linear systems of equations (see [2, 3]):
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The canonical solutions of system (1.3) are defined in [2] by
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2
+kπ,

Yk(λ)∼ Ŷ∞(λ)e(tλ/2−logλ)σ3 ,
(1.8)

where σ3 =
(

1 0
0 −1

)
, and the Stokes multiplier G1 is defined in [2] by

Y2(λ)= Y1(λ)G1, (1.9)

where G1 =
(
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)
and its entry s is independent of t and y .
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We first apply the transformation
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to system (1.3) to get

dŶ
dz

= 1
2

(
L N
M −L

)
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Applying (2.1) to (2.3), we get
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Now, using (1.6), the following asymptotics can be obtained:
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Substituting (2.6) into (2.5), we get the following second-order equation:
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Equation (2.7) has two turning points

zj = 1
2
±t−1/2

√
A2+4A′2+i(1+o(1)), j = 1,2 (2.8)



46 Y. LU AND Z. SHAO

which merge to 1/2 as t→∞, and Stokes directions
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Now, we define a constant α by
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Using [1, Theorem 1], we have the following theorem.
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where ν =−1/2+(1/2)itα2 and Dν(z), D−ν−1(z) are solutions of the parabolic cylin-

der equation.

3. Monodromy data and asymptotics

Theorem 3.1. For large t and z,
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Because we are going to calculate the higher-order part of the right-hand side, we
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where z∗ = 1/2+Tt−1/2 and T is a large parameter to be specified later. Using the

substitution
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we find the asymptotic expression of I2
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Using definition (2.10) and setting T = −√A2+4A′2 in I1, we have the following

expression for α:
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Substituting (3.8) into (3.2), setting T < t1/4, and combining it with (3.5) and (3.7),

the theorem is proved.
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Because arg(eπi/4
√

2tζ) ∼ 3π/4 when z → ∞, we have the following asymptotics

for Ŷ (11)
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By (1.9) and (2.2), the Stokes multiplier can be defined by Ŷ2 = Ŷ1G1. Therefore, the

monodromy data is
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Taking the square of the absolute value of both sides of this equation, we find that
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Taking the real part and the imaginary part of (3.13), we obtain the following theorem.
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