

THE GALOIS ALGEBRAS AND THE AZUMAYA GALOIS EXTENSIONS

GEORGE SZETO and LIANYONG XUE

Received 26 October 2001

Let B be a Galois algebra over a commutative ring R with Galois group G , C the center of B , $K = \{g \in G \mid g(c) = c \text{ for all } c \in C\}$, $J_g = \{b \in B \mid bx = g(x)b \text{ for all } x \in B\}$ for each $g \in K$, and $B_K = (\oplus \sum_{g \in K} J_g)$. Then B_K is a central weakly Galois algebra with Galois group induced by K . Moreover, an Azumaya Galois extension B with Galois group K is characterized by using B_K .

2000 Mathematics Subject Classification: 16S35, 16W20.

1. Introduction. Let B be a Galois algebra over a commutative ring R with Galois group G and C the center of B . The class of Galois algebras has been investigated by DeMeyer [2], Kanzaki [6], Harada [4, 5], and the authors [7]. In [2], it was shown that if R contains no idempotents but 0 and 1, then B is a central Galois algebra with Galois group K and C is a commutative Galois algebra with Galois group G/K where $K = \{g \in G \mid g(c) = c \text{ for all } c \in C\}$ [2, Theorem 1]. This fact was extended to the Galois algebra B over R containing more than two idempotents [6, Proposition 3], and generalized to any Galois algebra B [7, Theorem 3.8] by using the Boolean algebra B_a generated by $\{0, e_g \mid g \in G \text{ for a central idempotent } e_g\}$ where $BJ_g = Be_g$ and $J_g = \{b \in B \mid bx = g(x)b \text{ for all } x \in B\}$ for each $g \in G$ [6]. The purpose of this paper is to show that there exists a subalgebra B_K of B such that B_K is a central weakly Galois algebra with Galois group $K|_{B_K}$ induced by K where a weakly Galois algebra was defined in [8] and that $B_K B^K$ is an Azumaya weakly Galois extension with Galois group $K|_{B_K B^K}$ where an Azumaya Galois extension was studied in [1]. Thus some characterizations of an Azumaya Galois extension B of B^K with Galois group K are obtained, and the results as given in [2, 6] are generalized.

2. Definitions and notations. Throughout, let B be a Galois algebra over a commutative ring R with Galois group G , C the center of B , and $K = \{g \in G \mid g(c) = c \text{ for all } c \in C\}$. We keep the definitions of a Galois extension, a Galois algebra, a central Galois algebra, a separable extension, and an Azumaya algebra as defined in [7]. An Azumaya Galois extension A with Galois group G is a Galois extension A of A^G which is a C^G -Azumaya algebra where C the center of A [1]. A weakly Galois extension A with Galois group G is a finitely generated projective left module A over A^G such that $A_l G \cong \text{Hom}_{A^G}(A, A)$ where $A_l = \{a_l, \text{ a left multiplication map by } a \in A\}$ [8]. We call that A is a weakly Galois algebra with Galois group G if A is a weakly Galois extension with Galois group G such that A^G is contained in the center of A and that

A is a central weakly Galois algebra with Galois group G if A is a weakly Galois extension with Galois group G such that A^G is the center of A . An Azumaya weakly Galois extension A with Galois group G is a weakly Galois extension A of A^G which is a C^G -Azumaya algebra where C the center of A .

3. A weakly Galois algebra. In this section, let B be a Galois algebra over R with Galois group G , C the center of B , $B^G = \{b \in B \mid g(b) = b \text{ for all } g \in G\}$, and $K = \{g \in G \mid g(c) = c \text{ for all } c \in C\}$. Then, $B = \bigoplus \sum_{g \in G} J_g = (\bigoplus \sum_{g \in K} J_g) \oplus (\bigoplus \sum_{g \notin K} J_g)$ where $J_g = \{b \in B \mid bx = g(x)b \text{ for all } x \in B\}$ [6, Theorem 1]. We denote $\bigoplus \sum_{g \in K} J_g$ by B_K and the center of B_K by Z . Clearly, K is a normal subgroup of G . We show that B_K is an Azumaya algebra over Z and a central weakly Galois algebra with Galois group $K|_{B_K}$.

THEOREM 3.1. *The algebra B_K is an Azumaya algebra over Z .*

PROOF. By the definition of B_K , $B_K = \bigoplus \sum_{g \in K} J_g$, so $C (= J_1) \subset B_K$. Since B is a Galois algebra with Galois group G and $K = \{g \in G \mid g(c) = c \text{ for all } c \in C\}$, the order of K is a unit in C by [6, Proposition 5]. Moreover, K is an C -automorphism group of B , so B_K is a C -separable algebra by [5, Proposition 5]. Thus B_K is an Azumaya algebra over Z . \square

In order to show that B_K is a central weakly Galois algebra with Galois group $K|_{B_K}$, we need two lemmas.

LEMMA 3.2. *Let $L = \{g \in K \mid g(a) = a \text{ for all } a \in B_K\}$. Then, L is a normal subgroup of K such that $\bar{K} (= K/L)$ is an automorphism group of B_K induced by K (i.e., $K|_{B_K} \cong \bar{K}$).*

PROOF. Clearly, L is a normal subgroup of K , so for any $h \in K$,

$$h(B_K) = \bigoplus \sum_{g \in K} h(J_g) = \bigoplus \sum_{g \in K} J_{hgh^{-1}} = \bigoplus \sum_{g \in hKh^{-1}} J_g = \bigoplus \sum_{g \in K} J_g = B_K. \quad (3.1)$$

Thus $K|_{B_K} \cong \bar{K}$. \square

LEMMA 3.3. *The fixed ring of B_K under K , $(B_K)^K = Z$.*

PROOF. Let x be any element in $(B_K)^K$ and b any element in B_K . Then $b = \sum_{g \in K} b_g$ where $b_g \in J_g$ for each $g \in K$. Hence $bx = \sum_{g \in K} b_g x = \sum_{g \in K} g(x)b_g = \sum_{g \in K} x b_g = x \sum_{g \in K} b_g = xb$. Therefore $x \in Z$. Thus $(B_K)^K \subset Z$. Conversely, for any $z \in Z$ and $g \in K$, we have that $zx = xz = g(z)x$ for any $x \in J_g$, so $(g(z) - z)x = 0$ for any $x \in J_g$. Hence $(g(z) - z)J_g = \{0\}$. Noting that $BJ_g = J_gB = B$, we have that $(g(z) - z)B = \{0\}$, so $g(z) = z$ for any $z \in Z$ and $g \in K$. Thus $Z \subset (B_K)^K$. Therefore $(B_K)^K = Z$. \square

THEOREM 3.4. *The algebra B_K is a central weakly Galois algebra with Galois group $K|_{B_K} \cong \bar{K}$.*

PROOF. By Lemma 3.3, it suffices to show that (1) B_K is a finitely generated projective module over Z , and (2) $(B_K)_l \bar{K} \cong \text{Hom}_Z(B_K, B_K)$. Part (1) is a consequence of Theorem 3.1. For part (2), since B_K is an Azumaya algebra over Z by Theorem 3.1 again, $B_K \otimes_Z B_K^0 \cong \text{Hom}_Z(B_K, B_K)$ [3, Theorem 3.4, page 52] by extending the map $(a \otimes b)(x) = axb$ linearly for $a \otimes b \in B_K \otimes_Z B_K^0$ and each $x \in B_K$ where B_K^0 is the

opposite algebra of B_K . By denoting the left multiplication map with $a \in B_K$ by a_l and the right multiplication map with $b \in B_K$ by b_r , $(a \otimes b)(x) = (a_l b_r)(x) = axb$. Since $B_K = \bigoplus_{g \in K} J_g$, $B_K \otimes_Z B_K^o = \bigoplus_{g \in K} (B_K)_l (J_g)_r$. Observing that $(J_g)_r = (J_g)_l \bar{g}^{-1}$ where $\bar{g} = g|_{B_K} \in K|_{B_K} \cong \bar{K}$, we have that $B_K \otimes_Z B_K^o = \bigoplus_{g \in K} (B_K)_l (J_g)_r = \bigoplus_{g \in K} (B_K)_l (J_g)_l \bar{g}^{-1} = \bigoplus_{g \in K} (B_K J_g)_l \bar{g}^{-1}$. Moreover, since $B J_g = B$ for each $g \in K$ and $B = \bigoplus_{h \in G} J_h = B_K \oplus (\bigoplus_{h \notin K} J_h)$, $B_K \oplus (\bigoplus_{h \notin K} J_h) = B = B J_g = B_K J_g \oplus (\bigoplus_{h \notin K} J_h J_g)$ such that $B_K J_g \subset B_K$ and $\bigoplus_{h \notin K} J_h J_g \subset \bigoplus_{h \notin K} J_h$. Hence $B_K J_g = B_K$ for each $g \in K$. Therefore $B_K \otimes_Z B_K^o = \bigoplus_{g \in K} (B_K J_g)_l \bar{g}^{-1} = \bigoplus_{g \in K} (B_K)_l \bar{g}^{-1} = (B_K)_l \bar{K}$. Thus $(B_K)_l \bar{K} \cong \text{Hom}_Z(B_K, B_K)$. This completes the proof of part (2). Thus B_K is a central weakly Galois algebra with Galois group $K|_{B_K} \cong \bar{K}$. \square

Recall that an algebra A is called an Azumaya weakly Galois extension of A^K with Galois group K if A is a weakly Galois extension of A^K which is a C^K -Azumaya algebra where C is the center of A . Next, we show that $B_K B^K$ is an Azumaya weakly Galois extension with Galois group $K|_{B_K B^K} \cong \bar{K}$. We begin with the following two lemmas about B_K .

LEMMA 3.5. *The fixed ring of B under K , $B^K = V_B(B_K)$.*

PROOF. For any $b \in B^K$ and $x \in J_g$ for any $g \in K$, we have that $xb = g(b)x = bx$, so $b \in V_B(J_g)$ for any $g \in K$. Thus $b \in V_B(B_K)$. Conversely, for any $b \in V_B(B_K)$ and $g \in K$, we have that $bx = xb = g(b)x$ for any $x \in J_g$, so $(g(b) - b)x = 0$ for any $x \in J_g$. Hence $(g(b) - b)J_g = \{0\}$. But $B J_g = J_g B = B$ for any $g \in K$, so $(g(b) - b)B = \{0\}$. Thus $g(b) = b$ for any $g \in K$; and so $b \in B^K$. Therefore $B^K = V_B(B_K)$. \square

LEMMA 3.6. *The algebra B^K is an Azumaya algebra over Z where Z is the center of B_K .*

PROOF. Since B is a Galois algebra over R with Galois group G , B is an Azumaya algebra over its center C . By the proof of [Theorem 3.1](#), B_K is a C -separable subalgebra of B , so $V_B(B_K)$ is a C -separable subalgebra of B and $V_B(V_B(B_K)) = B_K$ by the commutator theorem for Azumaya algebras [\[3, Theorem 4.3, page 57\]](#). This implies that B_K and $V_B(B_K)$ have the same center Z . Thus $V_B(B_K)$ is an Azumaya algebra over Z . But, by [Lemma 3.5](#), $B^K = V_B(B_K)$, so B^K is an Azumaya algebra over Z . \square

THEOREM 3.7. *Let $A = B_K B^K$. Then A is an Azumaya weakly Galois extension with Galois group $K|_A \cong \bar{K}$.*

PROOF. Since B_K is a central weakly Galois algebra with Galois group $K|_{B_K} \cong \bar{K}$ by [Theorem 3.4](#), B_K is a finitely generated projective module over Z and $(B_K)_l \bar{K} \cong \text{Hom}_Z(B_K, B_K)$. By [Lemma 3.6](#), B^K is an Azumaya algebra over Z , so $A (\cong B_K \otimes_Z B^K)$ is a finitely generated projective module over $B^K (= A \bar{K})$. Moreover, since $B^K = V_B(B_K)$ by [Lemma 3.5](#) and $(B_K)_l \bar{K} \cong \text{Hom}_Z(B_K, B_K)$,

$$\begin{aligned} A_l \bar{K} &= (B_K B^K)_l \bar{K} = (B_K)_l \bar{K} (B^K)_r \cong B_K \bar{K} \otimes_Z B^K \cong \text{Hom}_Z(B_K, B_K) \otimes_Z B^K \\ &\cong \text{Hom}_{B^K} (B_K \otimes_Z B^K, B_K \otimes_Z B^K) \cong \text{Hom}_{B^K} (B_K B^K, B_K B^K) \\ &= \text{Hom}_{A \bar{K}} (A, A). \end{aligned} \tag{3.2}$$

Thus A is a weakly Galois extension of A^K with Galois group $K|_A \cong \bar{K}$. Next, we claim that A has center Z and $A^{\bar{K}}$ is an Azumaya algebra over $Z^{\bar{K}}$. In fact, B_K and B^K are Azumaya algebras over Z by [Theorem 3.1](#) and [Lemma 3.6](#), respectively, so $A (= B_K B^K)$ has center Z and $A^{\bar{K}} = (B_K B^K)^{\bar{K}} = B^K$. Noting that B^K is an Azumaya algebra over Z , we conclude that $A^{\bar{K}}$ is an Azumaya algebra over $Z^{\bar{K}}$. Thus A is an Azumaya weakly Galois extension with Galois group $K|_A \cong \bar{K}$. \square

4. An Azumaya Galois extension. In this section, we give several characterizations of an Azumaya Galois extension B by using B_K . This generalizes the results in [\[2, 6\]](#). The Z -module $\{b \in B_K \mid bx = g(x)b \text{ for all } x \in B_K\}$ is denoted by $J_{\bar{g}}^{(B_K)}$ for $\bar{g} \in \bar{K}$ where $\bar{K} (= K/L)$ is defined in [Lemma 3.2](#).

LEMMA 4.1. *The algebra B_K is a central Galois algebra with Galois group $K|_{B_K} \cong \bar{K}$ if and only if $J_{\bar{g}}^{(B_K)} = \oplus \sum_{l \in L} J_{gl}$ for each $\bar{g} \in \bar{K}$.*

PROOF. Let B_K be a central Galois algebra with Galois group $K|_{B_K} \cong \bar{K}$. Then $B_K = \oplus \sum_{\bar{g} \in \bar{K}} J_{\bar{g}}^{(B_K)}$ [\[6, Theorem 1\]](#). Next it is easy to check that $\oplus \sum_{l \in L} J_{gl} \subset J_{\bar{g}}^{(B_K)}$. But $B_K = \oplus \sum_{g \in K} J_g$, so $\oplus \sum_{g \in K} J_g = \oplus \sum_{\bar{g} \in \bar{K}} J_{\bar{g}}^{(B_K)}$ where $\oplus \sum_{l \in L} J_{gl} \subset J_{\bar{g}}^{(B_K)}$. Thus $J_{\bar{g}}^{(B_K)} = \oplus \sum_{l \in L} J_{gl}$ for each $\bar{g} \in \bar{K}$. Conversely, since $J_{\bar{g}}^{(B_K)} = \oplus \sum_{l \in L} J_{gl}$ for each $\bar{g} \in \bar{K}$, $B_K = \oplus \sum_{g \in K} J_g = \oplus \sum_{\bar{g} \in \bar{K}} J_{\bar{g}}^{(B_K)}$. Moreover, by [Lemma 3.3](#), $(B_K)^K = Z$, so \bar{K} is a Z -automorphism group of B_K . Hence $J_{\bar{g}}^{(B_K)} J_{\bar{g}^{-1}}^{(B_K)} = Z$ for each $\bar{g} \in \bar{K}$. Thus B_K is a central Galois algebra with Galois group $K|_{B_K} \cong \bar{K}$ because B_K is an Azumaya Z -algebra by [Theorem 3.1](#) (see [\[4, Theorem 1\]](#)). \square

Next, we characterize an Azumaya Galois extension B with Galois group K .

THEOREM 4.2. *The following statements are equivalent:*

- (1) B is an Azumaya Galois extension with Galois group K ;
- (2) $Z = C$;
- (3) $B = B_K B^K$;
- (4) B_K is a central Galois algebra over C with Galois group $K|_{B_K} \cong K$.

PROOF. (1) \Rightarrow (2). Since B is an Azumaya Galois extension with Galois group K , B^K is a C^K -Azumaya algebra. But, by [Lemma 3.6](#), B^K is an Azumaya algebra over Z , so $Z = C^K$. Hence $C \subset Z = C^K \subset C$. Thus $Z = C$.

(2) \Rightarrow (3). Suppose that $Z = C$. Then, by [Theorem 3.1](#), B_K is an Azumaya algebra over C . Hence by the commutator theorem for Azumaya algebras, $B = B_K V_B(B_K)$ [\[3, Theorem 4.3, page 57\]](#). But, by [Lemma 3.6](#), $B^K = V_B(B_K)$, so $B = B_K B^K$.

(3) \Rightarrow (4). By hypothesis, $B = B_K B^K$, so $L = \{1\}$ where L is given in [Lemma 3.2](#). By the proofs of [Theorem 3.1](#) and [Lemma 3.6](#), B_K and B^K are C -separable subalgebras of the Azumaya C -algebra B such that $B = B_K B^K$, so B_K and B^K are Azumaya algebras over C [\[3, Theorem 4.4, page 58\]](#). Thus C is the center of B_K . Next, we claim that $J_g = J_g^{(B_K)}$ for each $g \in K$. In fact, it is clear that $J_g \subset J_g^{(B_K)}$. Conversely, for each $a \in J_g^{(B_K)}$ and $x \in B$ such that $x = yz$ for some $y \in B_K$ and $z \in B^K$, noting that $B^K = V_B(B_K)$, we have that $ax = ayz = g(y)az = g(y)za = g(yz)a = g(x)a$. Thus $J_g^{(B_K)} \subset J_g$. This proves that $J_g = J_g^{(B_K)} (= J_{\bar{g}}^{(B_K)})$ for each $g \in K$. Hence, B_K is a central Galois algebra over C with Galois group $K|_{B_K} \cong K$ by [Lemma 4.1](#).

(4) \Rightarrow (1). Since B is a Galois algebra with Galois group G , B is a Galois extension with Galois group K . By hypothesis, B_K is a central Galois algebra over C with Galois group $K|_{B_K} \cong K$, so the center of B_K is C , that is, $Z = C$. Hence B^K is an Azumaya algebra over $C (= C^K)$ by [Lemma 3.6](#). Thus B is an Azumaya Galois extension with Galois group K . \square

[Theorem 4.2](#) generalizes the following result of Kanzaki [6, Proposition 3].

COROLLARY 4.3. *If $J_g = \{0\}$ for each $g \notin K$, then B is a central Galois algebra with Galois group K and C is a Galois algebra with Galois group G/K .*

PROOF. This is the case in [Theorem 4.2](#) that $B = B_K B^K = B_K$ where $B^K = C$. \square

We conclude the present paper with two examples, one to illustrate the result in [Theorem 4.2](#), and another to show that $Z \neq C$.

EXAMPLE 4.4. Let $A = \mathbb{R}[i, j, k]$, the real quaternion algebra over the field of real numbers \mathbb{R} , $B = (A \otimes_{\mathbb{R}} A) \oplus A \oplus A \oplus A$, and G the group generated by the elements in $\{g_1, k_i, k_j, k_k, h_i, h_j, h_k\}$ where g_1 is the identity of G and for all $(a \otimes b, a_1, a_2, a_3, a_4) \in B$,

$$\begin{aligned} k_i(a \otimes b, a_1, a_2, a_3, a_4) &= (ia_1 i^{-1} \otimes b, ia_1 i^{-1}, ia_2 i^{-1}, ia_3 i^{-1}, ia_4 i^{-1}), \\ k_j(a \otimes b, a_1, a_2, a_3, a_4) &= (ja_1 j^{-1} \otimes b, ja_1 j^{-1}, ja_2 j^{-1}, ja_3 j^{-1}, ja_4 j^{-1}), \\ k_k(a \otimes b, a_1, a_2, a_3, a_4) &= (ka_1 k^{-1} \otimes b, ka_1 k^{-1}, ka_2 k^{-1}, ka_3 k^{-1}, ka_4 k^{-1}), \\ h_i(a \otimes b, a_1, a_2, a_3, a_4) &= (a \otimes ibi^{-1}, a_2, a_1, a_4, a_3), \\ h_j(a \otimes b, a_1, a_2, a_3, a_4) &= (a \otimes jb j^{-1}, a_3, a_4, a_1, a_2), \\ h_k(a \otimes b, a_1, a_2, a_3, a_4) &= (a \otimes kbk^{-1}, a_4, a_3, a_2, a_1). \end{aligned} \tag{4.1}$$

Then,

- (1) we can check that B is a Galois algebra over B^G with Galois group G where $B^G = \{(r_1 \otimes r_2, r, r, r, r) \mid r_1, r_2, r \in \mathbb{R}\} \subset C$, and $C = (\mathbb{R} \otimes \mathbb{R}) \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$, the center of B ;
- (2) $K = \{g \in G \mid g(c) = c \text{ for all } c \in C\} = \{g_1, k_i, k_j, k_k\}$;
- (3) $J_1 = C$, $J_{k_i} = (\mathbb{R}i \otimes 1) \oplus \mathbb{R}i \oplus \mathbb{R}i \oplus \mathbb{R}i$, $J_{k_j} = (\mathbb{R}j \otimes 1) \oplus \mathbb{R}j \oplus \mathbb{R}j \oplus \mathbb{R}j$, $J_{k_k} = (\mathbb{R}k \otimes 1) \oplus \mathbb{R}k \oplus \mathbb{R}k \oplus \mathbb{R}k$, so $B_K = (A \otimes_{\mathbb{R}} A) \oplus A \oplus A \oplus A$. Hence B_K has center C , that is $Z = C$, and B_K is a central Galois algebra over C with Galois group $K|_{B_K} \cong K$;
- (4) $B^K = (\mathbb{R} \otimes A) \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$ and $B = B_K B^K$, that is, B is an Azumaya Galois extension with Galois group K .

EXAMPLE 4.5. Let $A = \mathbb{R}[i, j, k]$, the real quaternion algebra over the field of real numbers \mathbb{R} , $B = A \oplus A \oplus A$, $G = \{1, g_i, g_j, g_k\}$, and for all $(a_1, a_2, a_3) \in B$,

$$\begin{aligned} g_i(a_1, a_2, a_3) &= (ia_1 i^{-1}, ia_2 i^{-1}, ia_3 i^{-1}), \\ g_j(a_1, a_2, a_3) &= (ja_1 j^{-1}, ja_2 j^{-1}, ja_3 j^{-1}), \\ g_k(a_1, a_2, a_3) &= (ka_1 k^{-1}, ka_2 k^{-1}, ka_3 k^{-1}). \end{aligned} \tag{4.2}$$

Then,

(1) B is a Galois algebra over B^G where $B^G = \{(r_1, r, r) \mid r_1, r \in \mathbb{R}\} \subset C$, and $C = \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$, the center of B . The G -Galois system is $\{a_i; b_i \mid i = 1, 2, \dots, 8\}$ where

$$\begin{aligned} a_1 &= (1, 0, 0), & a_2 &= (i, 0, 0), & a_3 &= (j, 0, 0), & a_4 &= (k, 0, 0), \\ a_5 &= (0, 1, 0), & a_6 &= (0, j, 0), & a_7 &= (0, 0, 1), & a_8 &= (0, 0, k); \\ b_1 &= \frac{1}{4}a_1, & b_2 &= -\frac{1}{4}a_2, & b_3 &= -\frac{1}{4}a_3, & b_4 &= -\frac{1}{4}a_4, \\ b_5 &= \frac{1}{2}a_5, & b_6 &= -\frac{1}{2}a_6, & b_7 &= \frac{1}{2}a_7, & b_8 &= -\frac{1}{2}a_8, \end{aligned} \quad (4.3)$$

(2) $K = \{g \in G \mid g(c) = c \text{ for all } c \in C\} = \{1, g_i\}$ where $J_{g_i} = \mathbb{R}i \oplus \mathbb{R}i \oplus \mathbb{R}i$, so $B_K = \mathbb{R}[i] \oplus \mathbb{R}[i] \oplus \mathbb{R}[i]$ which is a commutative ring not equal to C , that is, $Z \neq C$.

ACKNOWLEDGMENTS. This work was supported by a Caterpillar Fellowship at Bradley University. The authors would like to thank the Caterpillar Inc. for the support.

REFERENCES

- [1] R. Alfaro and G. Szeto, *On Galois extensions of an Azumaya algebra*, Comm. Algebra **25** (1997), no. 6, 1873–1882.
- [2] F. R. DeMeyer, *Galois theory in separable algebras over commutative rings*, Illinois J. Math. **10** (1966), 287–295.
- [3] F. R. DeMeyer and E. Ingraham, *Separable Algebras over Commutative Rings*, Lecture Notes in Mathematics, vol. 181, Springer-Verlag, Berlin, 1971.
- [4] M. Harada, *Supplementary results on Galois extension*, Osaka J. Math. **2** (1965), 343–350.
- [5] ———, *Note on Galois extension over the center*, Rev. Un. Mat. Argentina **24** (1968/1969), no. 2, 91–96.
- [6] T. Kanzaki, *On Galois algebra over a commutative ring*, Osaka J. Math. **2** (1965), 309–317.
- [7] G. Szeto and L. Xue, *The structure of Galois algebras*, J. Algebra **237** (2001), no. 1, 238–246.
- [8] O. E. Villamayor and D. Zelinsky, *Galois theory with infinitely many idempotents*, Nagoya Math. J. **35** (1969), 83–98.

GEORGE SZETO: DEPARTMENT OF MATHEMATICS, BRADLEY UNIVERSITY, PEORIA, IL 61625, USA
E-mail address: szeto@hilltop.bradley.edu

LIANYONG XUE: DEPARTMENT OF MATHEMATICS, BRADLEY UNIVERSITY, PEORIA, IL 61625, USA
E-mail address: lxue@hilltop.bradley.edu

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk