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Let B be a Galois algebra over a commutative ring R with Galois group G, C the center
of B, K = {g ∈ G | g(c) = c for all c ∈ C}, Jg = {b ∈ B | bx = g(x)b for all x ∈ B} for
each g ∈ K, and BK = (⊕

∑
g∈K Jg). Then BK is a central weakly Galois algebra with Galois

group induced by K. Moreover, an Azumaya Galois extension B with Galois group K is
characterized by using BK .
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1. Introduction. Let B be a Galois algebra over a commutative ring R with Galois

group G and C the center of B. The class of Galois algebras has been investigated

by DeMeyer [2], Kanzaki [6], Harada [4, 5], and the authors [7]. In [2], it was shown

that if R contains no idempotents but 0 and 1, then B is a central Galois algebra

with Galois group K and C is a commutative Galois algebra with Galois group G/K
where K = {g ∈ G | g(c) = c for all c ∈ C} [2, Theorem 1]. This fact was extended

to the Galois algebra B over R containing more than two idempotents [6, Proposition

3], and generalized to any Galois algebra B [7, Theorem 3.8] by using the Boolean

algebra Ba generated by {0,eg | g ∈ G for a central idempotent eg} where BJg = Beg
and Jg = {b ∈ B | bx = g(x)b for all x ∈ B} for each g ∈ G [6]. The purpose of this

paper is to show that there exists a subalgebra BK of B such that BK is a central

weakly Galois algebra with Galois group K|BK induced by K where a weakly Galois

algebra was defined in [8] and that BKBK is an Azumaya weakly Galois extension with

Galois group K|BKBK where an Azumaya Galois extension was studied in [1]. Thus

some characterizations of an Azumaya Galois extension B of BK with Galois group K
are obtained, and the results as given in [2, 6] are generalized.

2. Definitions and notations. Throughout, let B be a Galois algebra over a com-

mutative ring R with Galois group G, C the center of B, and K = {g ∈ G | g(c) =
c for all c ∈ C}. We keep the definitions of a Galois extension, a Galois algebra, a cen-

tral Galois algebra, a separable extension, and an Azumaya algebra as defined in [7].

An Azumaya Galois extension A with Galois group G is a Galois extension A of AG

which is a CG-Azumaya algebra where C the center of A [1]. A weakly Galois exten-

sion A with Galois group G is a finitely generated projective left module A over AG

such that AlG �HomAG(A,A) where Al = {al, a left multiplication map by a∈A} [8].

We call that A is a weakly Galois algebra with Galois group G if A is a weakly Galois

extension with Galois group G such that AG is contained in the center of A and that
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A is a central weakly Galois algebra with Galois group G if A is a weakly Galois ex-

tension with Galois group G such that AG is the center of A. An Azumaya weakly

Galois extension A with Galois group G is a weakly Galois extension A of AG which is

a CG-Azumaya algebra where C the center of A.

3. A weakly Galois algebra. In this section, let B be a Galois algebra over R with

Galois group G, C the center of B, BG = {b ∈ B | g(b)= b for all g ∈G}, and K = {g ∈
G | g(c) = c for all c ∈ C}. Then, B = ⊕∑g∈G Jg = (⊕

∑
g∈K Jg)⊕ (⊕

∑
g �∈K Jg) where

Jg = {b ∈ B | bx = g(x)b for all x ∈ B} [6, Theorem 1] . We denote ⊕∑g∈K Jg by BK
and the center of BK by Z . Clearly, K is a normal subgroup of G. We show that BK is an

Azumaya algebra over Z and a central weakly Galois algebra with Galois group K|BK .

Theorem 3.1. The algebra BK is an Azumaya algebra over Z .

Proof. By the definition of BK , BK =⊕
∑
g∈K Jg , so C(= J1)⊂ BK . Since B is a Galois

algebra with Galois group G and K = {g ∈G | g(c)= c for all c ∈ C}, the order of K is

a unit in C by [6, Proposition 5]. Moreover, K is an C-automorphism group of B, so BK
is a C-separable algebra by [5, Proposition 5]. Thus BK is an Azumaya algebra over Z .

In order to show that BK is a central weakly Galois algebra with Galois group K|BK ,

we need two lemmas.

Lemma 3.2. Let L= {g ∈K | g(a)= a for all a∈ BK}. Then, L is a normal subgroup

of K such that K(=K/L) is an automorphism group of BK induced by K (i.e., K|BK �K).

Proof. Clearly, L is a normal subgroup of K, so for any h∈K,

h
(
BK
)=⊕

∑

g∈K
h
(
Jg
)=⊕

∑

g∈K
Jhgh−1 =⊕

∑

g∈hKh−1

Jg =⊕
∑

g∈K
Jg = BK. (3.1)

Thus K|BK �K.

Lemma 3.3. The fixed ring of BK under K, (BK)K = Z .

Proof. Let x be any element in (BK)K and b any element in BK . Then b =∑g∈K bg
where bg ∈ Jg for each g ∈ K. Hence bx = ∑g∈K bgx =

∑
g∈K g(x)bg =

∑
g∈K xbg =

x
∑
g∈K bg = xb. Therefore x ∈ Z . Thus (BK)K ⊂ Z . Conversely, for any z ∈ Z and

g ∈K, we have that zx = xz = g(z)x for any x ∈ Jg , so (g(z)−z)x = 0 for any x ∈ Jg .

Hence (g(z)−z)Jg = {0}. Noting that BJg = JgB = B, we have that (g(z)−z)B = {0},
so g(z)= z for any z ∈ Z and g ∈K. Thus Z ⊂ (BK)K . Therefore (BK)K = Z .

Theorem 3.4. The algebra BK is a central weakly Galois algebra with Galois group

K|BK �K.

Proof. By Lemma 3.3, it suffices to show that (1) BK is a finitely generated pro-

jective module over Z , and (2) (BK)lK � HomZ(BK,BK). Part (1) is a consequence of

Theorem 3.1. For part (2), since BK is an Azumaya algebra over Z by Theorem 3.1

again, BK ⊗Z BoK � HomZ(BK,BK) [3, Theorem 3.4, page 52] by extending the map

(a⊗ b)(x) = axb linearly for a⊗ b ∈ BK ⊗Z BoK and each x ∈ BK where BoK is the



THE GALOIS ALGEBRAS AND THE AZUMAYA GALOIS EXTENSIONS 39

opposite algebra of BK . By denoting the left multiplication map with a∈ BK by al and

the right multiplication map with b ∈ BK by br , (a⊗b)(x) = (albr )(x) = axb. Since

BK = ⊕
∑
g∈K Jg , BK ⊗Z BoK =

∑
g∈K(BK)l(Jg)r . Observing that (Jg)r = (Jg)lg−1 where

g = g|BK ∈K|BK �K, we have that BK⊗Z BoK =
∑
g∈K(BK)l(Jg)r =

∑
g∈K(BK)l(Jg)lg

−1 =∑
g∈K(BKJg)lg

−1. Moreover, since BJg = B for each g ∈ K and B = ⊕∑h∈G Jh = BK ⊕
(⊕∑h�∈K Jh), BK⊕(⊕

∑
h�∈K Jh) = B = BJg = BKJg⊕(⊕

∑
h�∈K JhJg) such that BKJg ⊂ BK

and ⊕∑h�∈K JhJg ⊂ ⊕
∑
h�∈K Jh. Hence BKJg = BK for each g ∈ K. Therefore BK⊗Z BoK =∑

g∈K(BKJg)lg
−1 =∑g∈K(BK)lg

−1 = (BK)lK. Thus (BK)lK � HomZ(BK,BK). This com-

pletes the proof of part (2). Thus BK is a central weakly Galois algebra with Galois

group K|BK �K.

Recall that an algebra A is called an Azumaya weakly Galois extension of AK with

Galois group K if A is a weakly Galois extension of AK which is a CK-Azumaya algebra

where C is the center of A. Next, we show that BKBK is an Azumaya weakly Galois

extension with Galois group K|BKBK � K. We begin with the following two lemmas

about BK .

Lemma 3.5. The fixed ring of B under K, BK = VB(BK).
Proof. For any b ∈ BK and x ∈ Jg for any g ∈K, we have that xb = g(b)x = bx, so

b ∈ VB(Jg) for any g ∈K. Thus b ∈ VB(BK). Conversely, for any b ∈ VB(BK) and g ∈K,

we have that bx = xb = g(b)x for any x ∈ Jg , so (g(b)−b)x = 0 for any x ∈ Jg .

Hence (g(b)−b)Jg = {0}. But BJg = JgB = B for any g ∈K, so (g(b)−b)B = {0}. Thus

g(b)= b for any g ∈K; and so b ∈ BK . Therefore BK = VB(BK).
Lemma 3.6. The algebra BK is an Azumaya algebra over Z where Z is the center of

BK .

Proof. Since B is a Galois algebra over R with Galois group G, B is an Azumaya

algebra over its center C . By the proof of Theorem 3.1, BK is a C-separable subalgebra

of B, so VB(BK) is a C-separable subalgebra of B and VB(VB(BK))= BK by the commu-

tator theorem for Azumaya algebras [3, Theorem 4.3, page 57]. This implies that BK
and VB(BK) have the same center Z . Thus VB(BK) is an Azumaya algebra over Z . But,

by Lemma 3.5, BK = VB(BK), so BK is an Azumaya algebra over Z .

Theorem 3.7. Let A = BKBK . Then A is an Azumaya weakly Galois extension with

Galois group K|A �K.

Proof. Since BK is a central weakly Galois algebra with Galois group K|BK � K
by Theorem 3.4, BK is a finitely generated projective module over Z and (BK)lK �
HomZ(BK,BK). By Lemma 3.6, BK is an Azumaya algebra over Z , so A(� BK⊗Z BK) is a

finitely generated projective module over BK(= AK). Moreover, since BK = VB(BK) by

Lemma 3.5 and (BK)lK �HomZ(BK,BK),

AlK =
(
BKBK

)
lK =

(
BK
)
lK
(
BK
)
r � BKK⊗Z BK �HomZ

(
BK,BK

)⊗Z BK

�HomBK
(
BK⊗Z BK,BK⊗Z BK

)�HomBK
(
BKBK,BKBK

)

=HomAK (A,A).

(3.2)
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Thus A is a weakly Galois extension of AK with Galois group K|A �K. Next, we claim

that A has center Z and AK is an Azumaya algebra over ZK . In fact, BK and BK are

Azumaya algebras over Z by Theorem 3.1 and Lemma 3.6, respectively, so A(= BKBK)
has center Z and AK = (BKBK)K = BK . Noting that BK is an Azumaya algebra over Z ,

we conclude that AK is an Azumaya algebra over ZK . Thus A is an Azumaya weakly

Galois extension with Galois group K|A �K.

4. An Azumaya Galois extension. In this section, we give several characterizations

of an Azumaya Galois extension B by using BK . This generalizes the results in [2, 6].

The Z-module {b ∈ BK | bx = g(x)b for all x ∈ BK} is denoted by J(BK)g for g ∈ K
where K(=K/L) is defined in Lemma 3.2.

Lemma 4.1. The algebra BK is a central Galois algebra with Galois group K|BK � K
if and only if J(BK)g =⊕∑l∈L Jgl for each g ∈K.

Proof. Let BK be a central Galois algebra with Galois group K|BK � K. Then BK =
⊕∑g∈K J

(BK)
g [6, Theorem 1]. Next it is easy to check that ⊕∑l∈L Jgl ⊂ J(BK)g . But

BK = ⊕
∑
g∈K Jg , so ⊕∑g∈K Jg = ⊕

∑
g∈K J

(BK)
g where ⊕∑l∈L Jgl ⊂ J(BK)g . Thus J(BK)g =

⊕∑l∈L Jgl for each g ∈ K. Conversely, since J(BK)g = ⊕∑l∈L Jgl for each g ∈ K,

BK = ⊕∑g∈K Jg = ⊕∑g∈K J
(BK)
g . Moreover, by Lemma 3.3, (BK)K = Z , so K is a

Z-automorphism group of BK . Hence J(BK)g J(BK)g−1 = Z for each g ∈ K. Thus BK is a cen-

tral Galois algebra with Galois group K|BK � K because BK is an Azumaya Z-algebra

by Theorem 3.1 (see [4, Theorem 1]).

Next, we characterize an Azumaya Galois extension B with Galois group K.

Theorem 4.2. The following statements are equivalent:

(1) B is an Azumaya Galois extension with Galois group K;

(2) Z = C ;

(3) B = BKBK ;

(4) BK is a central Galois algebra over C with Galois group K|BK �K.

Proof. (1)⇒(2). Since B is an Azumaya Galois extension with Galois group K, BK

is a CK -Azumaya algebra. But, by Lemma 3.6, BK is an Azumaya algebra over Z , so

Z = CK . Hence C ⊂ Z = CK ⊂ C . Thus Z = C .

(2)⇒(3). Suppose that Z = C . Then, by Theorem 3.1, BK is an Azumaya algebra over

C . Hence by the commutator theorem for Azumaya algebras, B = BKVB(BK) [3, Theo-

rem 4.3, page 57]. But, by Lemma 3.6, BK = VB(BK), so B = BKBK .

(3)⇒(4). By hypothesis, B = BKBK , so L= {1} where L is given in Lemma 3.2. By the

proofs of Theorem 3.1 and Lemma 3.6, BK and BK are C-separable subalgebras of the

Azumaya C-algebra B such that B = BKBK , so BK and BK are Azumaya algebras over C
[3, Theorem 4.4, page 58]. Thus C is the center of BK . Next, we claim that Jg = J(BK)g for

each g ∈K. In fact, it is clear that Jg ⊂ J(BK)g . Conversely, for each a∈ J(BK)g and x ∈ B
such that x =yz for some y ∈ BK and z ∈ BK , noting that BK = VB(BK), we have that

ax = ayz = g(y)az = g(y)za= g(yz)a= g(x)a. Thus J(BK)g ⊂ Jg . This proves that

Jg = J(BK)g (= J(BK)g since L= {1}) for each g ∈ K. Hence, BK is a central Galois algebra

over C with Galois group K|BK �K by Lemma 4.1.
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(4)⇒(1). Since B is a Galois algebra with Galois group G, B is a Galois extension with

Galois group K. By hypothesis, BK is a central Galois algebra over C with Galois group

K|BK �K, so the center of BK is C , that is, Z = C . Hence BK is an Azumaya algebra over

C(= CK) by Lemma 3.6. Thus B is an Azumaya Galois extension with Galois group K.

Theorem 4.2 generalizes the following result of Kanzaki [6, Proposition 3].

Corollary 4.3. If Jg = {0} for each g �∈ K, then B is a central Galois algebra with

Galois group K and C is a Galois algebra with Galois group G/K.

Proof. This is the case in Theorem 4.2 that B = BKBK = BK where BK = C .

We conclude the present paper with two examples, one to illustrate the result in

Theorem 4.2, and another to show that Z ≠ C .

Example 4.4. Let A = R[i,j,k], the real quaternion algebra over the field of real

numbers R, B = (A⊗RA)⊕A⊕A⊕A⊕A, and G the group generated by the elements in

{g1,ki,kj,kk,hi,hj,hk} where g1 is the identity of G and for all (a⊗b,a1,a2,a3,a4)∈
B,

ki
(
a⊗b,a1,a2,a3,a4

)= (iai−1⊗b,ia1i−1, ia2i−1, ia3i−1, ia4i−1),

kj
(
a⊗b,a1,a2,a3,a4

)= (jaj−1⊗b,ja1j−1,ja2j−1,ja3j−1,ja4j−1),

kk
(
a⊗b,a1,a2,a3,a4

)= (kak−1⊗b,ka1k−1,ka2k−1,ka3k−1,ka4k−1),

hi
(
a⊗b,a1,a2,a3,a4

)= (a⊗ibi−1,a2,a1,a4,a3
)
,

hj
(
a⊗b,a1,a2,a3,a4

)= (a⊗jbj−1,a3,a4,a1,a2
)
,

hk
(
a⊗b,a1,a2,a3,a4

)= (a⊗kbk−1,a4,a3,a2,a1
)
.

(4.1)

Then,

(1) we can check that B is a Galois algebra over BG with Galois group G where

BG = {(r1⊗r2,r ,r ,r ,r) | r1,r2, r ∈R} ⊂ C , and C = (R⊗R)⊕R⊕R⊕R⊕R, the

center of B;

(2) K = {g ∈G | g(c)= c for all c ∈ C} = {g1,ki,kj,kk};
(3) J1 = C , Jki = (Ri⊗ 1)⊕Ri⊕Ri⊕Ri⊕Ri, Jkj = (Rj ⊗ 1)⊕Rj ⊕Rj ⊕Ri⊕Rj,

Jkk = (Rk⊗1)⊕Rk⊕Rk⊕Ri⊕Rk, so BK = (A⊗RR)⊕A⊕A⊕A⊕A. Hence BK
has center C , that is Z = C , and BK is a central Galois algebra over C with Galois

group K|BK �K;

(4) BK = (R⊗A)⊕R⊕R⊕R⊕R and B = BKBK , that is, B is an Azumaya Galois

extension with Galois group K.

Example 4.5. Let A = R[i,j,k], the real quaternion algebra over the field of real

numbers R, B =A⊕A⊕A, G = {1,gi,gj,gk}, and for all (a1,a2,a3)∈ B,

gi
(
a1,a2,a3

)= (ia1i−1, ia2i−1, ia3i−1),

gj
(
a1,a2,a3

)= (ja1j−1,ja3j−1,ja2j−1),

gk
(
a1,a2,a3

)= (ka1k−1,ka3k−1,ka2k−1).

(4.2)
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Then,

(1) B is a Galois algebra over BG where BG = {(r1,r ,r) | r1, r ∈ R} ⊂ C , and C =
R⊕R⊕R, the center of B. The G-Galois system is {ai;bi | i= 1,2, . . . ,8} where

a1 = (1,0,0), a2 = (i,0,0), a3 = (j,0,0), a4 = (k,0,0),
a5 = (0,1,0), a6 = (0,j,0), a7 = (0,0,1), a8 = (0,0,k);

b1 = 1
4
a1, b2 =−1

4
a2, b3 =−1

4
a3, b4 =−1

4
a4,

b5 = 1
2
a5, b6 =−1

2
a6, b7 = 1

2
a7, b8 =−1

2
a8,

(4.3)

(2) K = {g ∈ G | g(c) = c for all c ∈ C} = {1,gi} where Jgi = Ri⊕Ri⊕Ri, so BK =
R[i]⊕R[i]⊕R[i] which is a commutative ring not equal to C , that is, Z ≠ C .
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