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The main purpose of this paper is using the estimates for character sums and the analytic
method to study the first power mean of Dirichlet L-functions with the weight of general
Kloosterman sums, and give an interesting asymptotic formula.
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1. Introduction. Let g > 2 be an integer, x denotes a Dirichlet character modulo g.
For any integers m and n, we define the general Kloosterman sums S(m,n,x,q) as
follows:

a
Stm,n,x,qa) = > x(a)e : (1.1)

(ma+nd)
a=1

where d denotes the inverse of a modulo g and e(y) = 2™, This summation is very
important, because it is a generalization of the classical Kloosterman sums. Many au-
thors had studied the properties of S(m,n, x,q). For instance, Chowla [1] and MalySev
[3] obtained a sharper upper bound estimation for S(m,n,x,q). That is,

|S(m,n,x,p)| < (m,n,p)?pt/2re, (1.2)

where p is a prime, € is any fixed positive number, and (m,n,p) denotes the greatest
common divisor of m, n, and p. But for an arbitrary composite number g, we do not
know how large |S(m,n,x,q)| is. In fact the value of |S(m,n,x,q)| is quite irregular
if g is not a prime. The main purpose of this paper is to obtain some good distribution
properties of |S(m,n,x,q)| in some weight mean value problems. For convenience,
in this paper we always suppose g > 3 be an integer and L(s, x) denotes the Dirichlet
L-function corresponding to character xmodgq. Then we can use the estimates for
character sums and the analytic method to prove the following main result.

THEOREM 1.1. For any integers m and n with (mn,q) = 1, we have the asymptotic
formula

S Ismnx,a) P |LA,X) | = C- ¢ (@) +0(a*?-d*(q) - In’q),  (1.3)
X#X0

where

(1.4)
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is a constant, 3", denotes the summation over all nonprincipal characters modulo q,
H;, denotes the product over all primes p with (p,q) = 1, d(q) is the divisor function,

¢ (q) is the Euler function, and (‘Z‘) = (2n)!/(nh)2.

For general integer k > 2, whether there exists an asymptotic formula for

S Sm,n,x,a) |1,y | (1.5)
X#X0

is an unsolved problem.

2. Some lemmas. In order to complete the proof of Theorem 1.1, we need the fol-
lowing lemmas.

LEMMA 2.1. For any integer q > 3, we have the estimate

q/d—1
Sz S | S xsd+1D|L(Lx) || =0(q-d(q) - Inq). 2.1)
dlq s=1 1 X#Xo

PROOF. Let N = ¢3/%, x be a nonprincipal character modq and A(x,y) =
> N<n=y X(1n). Then by Abel identity and Pélya-Vinogradov inequality, we have

Ly =Y XZ”*J A(x,y)dy

p N2
N o n (2.2)
_ 3 X p(1na)
n=N n a
So that
1
L= > M‘ +0(M). (2.3)
n=<N n a
On the other hand, let ¥ (n) be a multiplicative function defining by
(%)
r(p*) =~ r(1) =1, (2.4)

4o’

where p is a prime and « is any positive integer. For the function r (n), it is easy to
prove that

n
rd)-r{—=)=1, (2.5)
Sra-r(g)
2
X(n)r(n)) _ X (mm)r (m)r(n)
<n§N n m%N ngN mn (2.6)
_ x(n) x(m)r(n,N)
oy M,y xO0roun,

n=N N<n<N?



where
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ro,N)y = S V(d)-r(%).

dln
d, n/d<N

Note that the triangle inequalities

lal - bl <laxbl|, laxb|<lal+Ibl,
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(2.7)

(2.8)

from (2.3), (2.6), Cauchy inequality, and the orthogonality relationship for character

sums

we have

Saty

dlq

Z (1) = {d)(q), if n = 1modg;

xmodgq 0, otherwise,
Z x(a)= _
0, otherwise,

q/d-1
S x(sd+1)|L(1,X) ]
s=1 X#+X0
q/d-1 (n)
=S a S S xsd+n| S XT +O(lnq)‘
dlq s=1 | X#Xo n<N
gt x(n)
=2.d" > | X x(sd+1) ZT‘ +0(q-d(q)-Inq)
dla s=1 X n<N
q/d-1
< zdl/z Z ZX(Sd+1 ( Z x(n)‘ Z x(n)r(n)' )l
dlq s=1 X n<N n<N
e (n)r(n)
+3d2 S | Sxsd+1y| > XY ‘ +q-d(q)-Inq
dla s=1 X n<N
) wrnN V]
ez 4. ( xn’ x(n)r(n, D}
ald-1 rim)r(n)
+h@dar >y S Y +q-d(q)-Inq
dlq s=1 m=<N n=<N

(sd+1)m=nmodq

Z xm)r(n,N)

21/2
™ ” +q-d(q)-Inq

<<q-d(q)-[2

X

N<n<N?2

q)Zd“ZZ Z r(m)r(n)

dlq m=<Nn<N mn
m=nmodd
m=n

(2.9)
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1/2

Z Z r(m,N)-r(n,N)

mn

<q*?-d(q)- +q-d(q)-In*q

N<m<N? N<n=N2

m=nmodq
< q-d(q) -lnzq.
(2.10)
This proves Lemma 2.1. |
LEMMA 2.2. For any integer q > 3, we have the asymptotic formula
> LX) | =C-dp(@)+0(a"? - Ing), (2.11)
X#Xo
where
o 2\2 4)\2 2n) 2
2'1’2(71 n <> (2> +...+i+... (2.12)
= . 42 p? 44 - p4 42n . pen

is an absolute constant.

PROOF. Let N = ¢3/2. Then from (2.3), (2.6), the orthogonality relationship for char-
acter sums, and the method of proving Lemma 2.1, we have

S caxl= 3 | 3 X oang)
X#X0 X#X0 | nsN
xmrm) |*
=> Zn‘ +0(Inq)
X n<N
2
(n)r(n)
+Z( ’ > Xn‘ )
X n=<N n=<N

- p(q) - Z Z’T(m) T(n)+0(lnq)

m=<N n<N
m=nmodq
X | N<n<N2

—p@- S ”( " 4 0(In*q)

n=1
y X)-rouLN) '2)”2)

(n,g)=1
; n
N<n<N?2

volwe(s

=p@- 3 T,in)JrO(Q”Z-lnq)
n=1
(n,q)=1

=C-p(@)+0(q"*-1nq).

This proves Lemma 2.2. ]
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LEMMA 2.3. Let m,n, and q be integers with q > 3. Then we have the estimates

qa -
S(m,n,q) = Z,e(%m) < (m,n,q)'?q'?d(q), (2.14)

a=1
where Y., denotes the summation over all a such that (a,q) = 1.

PROOF. See [2]. O

3. Proof of Theorem 1.1. In this section, we will complete the proof of Theorem 1.1.
First we have

> LX) - ISt x.a) |

X#Xo0

1,2, r—-sym+(({r-3s)n
=2 2 e( 1 ) > X3 LX) |

r=1 s=1 X#Xo0
a q - -
S e(r(l—s)mﬂf(l—s)n) S X9 LLX)|
r=1 s=1 q X#Xo0
a q - -
—p@ 3 10|+ 3 e (FEEEIEEI) 5 o) 1a,x0 .
X#X0 s=2r=1 a X#X0
(3.1)
From (3.1) and Lemmas 2.2 and 2.3 we get
> LX) |- [Stmnxa) |
X#X0
=C-$*(@)+0(q’*-Inq) (3.2)
qa
+O<q”2d(q)2 (s=Dm,G-Dn,a)"| > x()[L(1,x)] l)
§=2 X*X0

Note that (m,q) = (n,q) = (s,q) =1, and (1-5,9) = (s§-5,q9) = (s(5-1),q) = (5 -
1,q), sowe have (s—-1,5—1,q) = (s—1,q). Thus from (3.2) and Lemma 2.1 we obtain
the asymptotic formula

SILLX) |- |Stmn,x,a) |
X#X0

=C-$*(@+0(q’* -Inq)
a
+0 (q”zd(q) Sis—1,9)'2

§=2

> x()[L(,x)| D
X#Xo0

(3.3)
=C-¢*(@+0(a** Inq)

ald-1
+0 (ql/Zd(q) Z Z arz

dlg t=1

> x(td+1)|L(1,x)|D

X#X0

=C-¢p*(@)+0(q*?*-d*(q) -In*q).

This completes the proof of the theorem.
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