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Let (Y1,01),...,(Yn,0,) be independent real-valued random vectors with Y;, given 6;, is
distributed according to a distribution depending only on 0; for i = 1,...,n. In this paper,
best linear unbiased predictors (BLUPs) of the 6;’s are investigated. We show that BLUPs of
0;’s do not exist in certain situations. Furthermore, we present a general empirical Bayes
technique for deriving BLUPs.
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1. Introduction. Let (Y1,601),...,(Yy,0,) be independent real-valued random vec-
tors satisfying the following:

(i) conditional on 0;, Y; is distributed according to a distribution depending only
on 0;, E(Y; | 6;) = 0;, and Var(Y; | 6;) = u»(0;) with independence over 6;,
i=1,...,n;

(i) @;’s are independent with E(68;) = y; and Var(9;) = 72, i = 1,...,n, where u;’s
and T are fixed numbers;

(iii) 0 < Dj = Eux(0;) < 00, i =1,...,n, where D;’s are fixed numbers.
A special case of the above model is the so-called mixed linear model given by

Yi=xX;B+v;+e;, i=1,...,n, (1.1)

where x; = (xi1,...,Xik)’, B is a k vector of unknown parameters, sampling errors e;
and the random effects v; are independently distributed with E(e;) = 0, E(v;) = O,
Var(e;) = D;, and Var(v;) = 72, i = 1,...,n. The mixed linear model can also be
written as

yi:9i+eiv 9i=X;B+Ui, i=1,...,n. (1.2)

The aim of this paper is about the best linear unbiased predictors (BLUPs) of 6;,
i=1,...,n. BLUPs are estimates of the realized value of the random variable 0; and
are linear in the sense that they are linear functions of the data, y;; unbiased in the
sense that the average value of the estimate is equal to the average of the quantity
being estimated; best in the sense that they have minimum mean squared error within
the class of linear unbiased estimators; and predictors to distinguish them from the
estimators.
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The first derivation of BLUPs seems to have been given by Henderson [8] who stud-
ied a more general version of the mixed linear model, namely, Y = X + Zv + e, where
Z is a known design matrix, while e is a vector of errors which is uncorrelated with
random vector v. Henderson has described BLUPs as being “joint maximum likelihood
estimates,” and has assumed that v and e are normally distributed. A number of other
derivations have been given over the years. Within the classical school of thought,
BLUPs have been shown to have minimum mean squared error within the class of lin-
ear unbiased estimators (see Henderson [9] and Harville [5, 6]); in the Bayesian frame-
work, BLUPs have been derived as the posterior mean of the parameter of interest with
a noninformative prior for 8 (see Dempfle [2], and Lindley and Smith [13]); and an-
other derivation of BLUPs has been given by Jiang [10] showing a connection between
BLUP and restricted maximum likelihood. In an interesting review article, Robinson
[14] has given a wide-ranging account of BLUPs in the mixed model with examples and
applications. However, his discussion on empirical Bayes methods and their connec-
tion with BLUPs is rather limited—he only states that BLUPs are equivalent to one of
the techniques of parametric empirical Bayes methodology, see Robinson [14, Section
5.7]. Commenting on Robinson’s paper, Harville [7] has demonstrated a connection be-
tween BLUP and empirical Bayes estimators for a one-way random effects model given
by yij =u+a;+eij (i=1,...,n; j=1,...,J;). The purpose of this paper is to inves-
tigate the connection between BLUPs and empirical Bayes estimators more closely. In
this paper, our discussion is focused on the general model described by (i), (ii), and (iii)
at the beginning of the introduction. We first show the nonexistence of BLUPs under
certain situations, and then we present a general empirical Bayes technique for deriv-
ing BLUPs. Briefly, our claim is as follows: for i = 1,...,n, suppose 6;(Y;, u;) denotes
the linear Bayes estimator of 0; with respect to squared error loss, and suppose that
{; denotes the best linear unbiased estimator (BLUE) of u; based on Y7,...,Y,. Then
3i(Yi, ;) is the BLUP of 0;,1i = 1,...,n, whenever BLUPs exist. This general argument is
in line with Robinson’s statement that BLUPs are equivalent to one of the techniques
of parametric empirical Bayes methods. Our argument, however, gives a clear process
of derivation and would be quite useful when deriving BLUPs in applications.

The main results of the paper are given in Section 2. The proofs are deferred to
Section 3.

2. Main results. Throughout this section, we assume that (Y1,0,),...,(Yy, 0,) are
independent random vectors, where the Y;’s are observed whereas the 0;’'s are not.
We first derive expressions for BLUPs of 0;, i = 1,...,n, under various conditions on
the prior parameters of the 0;’s. Recall that @i is called a BLUP of 0; under squared
error loss if E(@i -0;) =0, @i is a linear combination of the observations (Yq,...,Yy),
and @i has the minimum mean squared error E (@i —0;)%, where E denotes expectation
with respect to all the random variables involved; see, for example, Searle et al. [15,
Chapter 7]. In other words, we investigate predictors of the form @i = Z;l:1 ¢ijY;, where
cij (= 0) are some constants. In order for E (éi —0;) =0 to be satisfied, it is required
that c;; satisfy the restriction that Z;l:l CijHUj = Mi, i =1,...,n, where up = E(0x), k =
1,...,n. When the 6;’s are i.i.d. then the preceding condition reduces to Z}Ll cij =1,
i=1,...,n.
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THEOREM 2.1. Let (Y1,01),...,(Yy, 60y) be independent real-valued random vectors
satisfying the following:

(i) conditional on 0;, Y; is distributed according to a distribution depending only
on 0; and E(Y; | 0;) = 0;, and Var(Y; | 0;) = u2(0;) with independence over
i=1,...,n;

(ii) 6;’s are independent with E(0;) = u; and Var(0;) = T2 fori=1,...,n, where li;’s
and T are fixed numbers;

(iii) 0 < D; =Euy(0;) < o0, i=1,...,n, where D;’s are fixed numbers.
Let cij (= 0) be constants such that z?:l cijuj = pi, i = 1,...,n. Then the mean
squared errvor (Bayes risk) of @i = z;;l ¢ijY; as an estimator of 0; is given by

2
n n n
ri(C) —E( z Cinj—Qi) = Z CiZJ-Dj+T2 ( Z Cizj-&—l—ZCii). (2.1)
j=1

Jj=1 Jj=1

The values of c¢;; that minimize v;(c) subject to the restriction Z;L:l CijHj = M IS cl*j
such that fori=1,...,n,

w_ _ PHj . S ) «_ 2T+ pH
Cif_;Z(Djrrz)' j=1,..,i-1i+1,...,n; cfi —2(Di+'r2)’ (2.2)

where p = pi[Di(D; +72) '/ 3] Wi [2(Dj + 1)1

Note that the BLUP Z;L:l ci*jYJ in Theorem 2.1 depends on the ;’s as well. Thus, if
u;’s are completely unknown then there is no BLUP for 6;. However, if p;’s are partially
known then a BLUP can be developed as a function of the X;’s alone, provided that D;’s
and T2 are all known. These possibilities are discussed in the following corollaries.

COROLLARY 2.2. Assume that the conditions of Theorem 2.1 hold. Further, suppose
that p; = p for i = 1. Then Y} c;;Y; reduces to

( D, )zy_lyj(Dj+TZ)l+( T2 )Yi. 2.3)

Di+T? P (Dj+12)"" Di+7?

COROLLARY 2.3. Assume that the conditions of Theorem 2.1 hold. Further, suppose
that pu; = t;3, where t; are some known constants, i = 1,...,n, and B is an unknown
parameter. Then 3.j_; c;Y; reduces to

Dl' ~ T2
B+ —— |Yi 2.4
ERPNERS »

where B = (X (D +TH) M ST (D +T2) 71X .
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COROLLARY 2.4. Assume that the conditions of Theorem 2.1 hold. Further, suppose
that p; = x;B, where x; = (xj1,...,Xi%)" are known vectors and B is a k vector of un-
known parameters, i = 1,...,n. Then Z}Ll ci*ij reduces to

Di P T2
(e Jeb (e v 5

where B = (X7 (D +T2)*1X;.xj]*1[z?:1(Dj +72)71%,Y;].

We now derive BLUPs using an empirical Bayes technique. Let 6;(Y;, 1t;) = a;Yi+ b/
denote the linear Bayes estimator of 8; with respect to squared error loss based on the
observation Y;, i = 1,...,n. Then a; and b} can be obtained by solving the equations
aAi/a(li =0 and aAi/abi = 0, where A = E(Qi —aiYi —bi)z, i= 1,...,n.

First, assume that the conditions of Theorem 2.1 hold. Then observe that

0A;
6ai

0A;
ob;

=—2E(0i—aiYi—loi)(Yi), =—2E(0,——aiYi—bi). (26)

By setting 9A;/0b; = 0, we obtain b} = py;D;(D; + 72)~!. Now substituting the pre-
ceding value in 0A;/da; = 0, we obtain a; = T2(72+D;)~!. Thus, the Bayes estimator
5i(Yi, i) = a¥Y; +b¥ is given by

8:(Yi,ui) = t2(t2+ D) "Yi + Dy (D +72) 7. (2.7)

Suppose now that y; = p for all i > 1. Then, the BLUE of the common u is given by

-1
S Yi(Dj+1?)

= —. (2.8)
Z;l:l (Dj+71?) !
Substituting fi for u in (2.7) yields the empirical Bayes estimator
PO . , S YD)
6i=T%(1*+D;) 'Y+ Di(T*+ D) 1251 YD, ¢ T) (2.9)

71 -
i1 (Dj+72)

Note that (2.9) is the same as the BLUP (2.3) derived in Corollary 2.2.
Suppose now that u; = t; 8, where t; is some known constant, i = 1,...,n, and B is
an unknown parameter. Then, the BLUE of y; is given by

fii = tip, (2.10)

where
St (D +72)7
St +T2)”

Bz (2.11)
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is the weighted least squares estimator of . Substituting fi; of (2.10) for y; in (2.7)
yields the empirical Bayes estimator

5i=T2(t2+D;) 'Y+ Di (T2 +D:) ' t:B, (2.12)

which is the same as the BLUP (2.4) given in Corollary 2.3.
Finally, suppose that y; = x;, where x; and B are as defined in Corollary 2.4. Then,
the BLUE of y; is given by

~

- xB, (2.13)

=

where
n - n
{Z Dj+T1?) xj,.xj} [Z Dj+12)" xjyj}, (2.14)

the weighted least squares estimator of B. Substituting i; of (2.13) for y; in (2.7) yields
the empirical Bayes estimator

5i=T2(t2+D;) Y+ Di(t*+ D) "X\ B=xB+yi(Yi—X,B), (2.15)

where y; = 72(D; + T2)~!. Again, observe that (2.15) is the same as the BLUP (2.5)
derived in Corollary 2.4.

We now present a multivariate extension of Theorem 2.1 to the case that Y;’s and
0;’s are real-valued random vectors. As a generalization of the univariate case, we
assume that 64,...,0, are ii.d. p x 1 random vectors with a common distribution G
having a second moment. For given 0;, assume that Y; have a distribution Fy,, which
also has a finite second moment. For a given estimator §(y), the mean squared error
of 8(y) is defined as

R(8) = tr[E(5(Y)-0)(5(Y)-0)], (2.16)

where tr(-) denotes the trace of the corresponding matrix and expectation E is with
respect to all the random variables involved.

THEOREM 2.5. Let (Y1,601),...,(Yy,0,) be independent random vector pairs satis-

fving the following:
(i) 04,..., 0, areiid. according to G withD(0;) =V < fori=1,...,n

(ii) Yy, given 0y, is distributed according to Fo, with D(Y; | 6;) <o fori=1,...,n

(111) E(Yi | 01) = Gi fOl"i = 1,...,1’1
where D(-) stands for dispersion matrix (i.e., variance-covariance matrix) of the corre-
sponding vector. Then, as an estimator of 0;, the mean squared error of the estimator
8= SiiciYj, with 3% ¢ij =1 and cij = 0, as defined by (2.16) is given by

n
R(ci,8)) = > citr[E(D(Y;16:)+V]+citr[ED(Y:]0:)]+(1-cii)*tr(V),
j=1,j+i
(2.17)
where i = 1,...,n. Denote aj = tr[E(D(Y; | 0;))+ V], j=1,...,i-1,i+1,...,n;a; =
tr[E(D(Y; | 0;))] and V = tr(V). Then the value of ¢; = (¢i1,...,Cin) Which minimizes
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R(c;,8;) iscF = (c¥,...,ck,) such that

ck = ai - 7 J=Leni-Litln
aj[1+(ai+v)zj:1,j¢iai ]

. (2.18)
1+V(3) ast)

[1 +(an+V) Z}‘:Ljﬂaj‘.l]

ii

We now give three examples to illustrate BLUPs obtained using the empirical Bayes
(EB) method described above.

EXAMPLE 2.6 (normal hierachy). Consider estimation of 6; in the model X; | 6; ~
N(0;,02) fori=1,...,n,independent, and 8; ~ N(u,T?) fori =1,...,n, independent,
where p is unknown. Then the linear Bayes estimator of 0; based on Xj is

2 T2

51‘(X1',[,l) Xi. (2.19)

= +
ozr72H T g

The BLUE of u is fi = X. Now, replacing p by X in the preceding expression yields
the EB estimator

o2 — T

= X+ Xi.
o2+T12" g2t

2

0i(Xi, 1) (2.20)

It is easy to show that the preceding EB estimator of 0; is also the BLUP (2.3) of
0; given in Corollary 2.2 under the present setup. It is interesting to note that this
EB estimator (2.20) can also be obtained as a hierarchical Bayes estimator with an
additional (improper) prior, Uniform(—oco, ), on u. If T2 is unknown we can estimate
(02 4+ 712)! by the unbiased estimator (n—3)/>.(X; —X)? and obtain the EB estimator
(see Lindley [12]; Efron and Morris [3, 4])

(n-1)o?

X+[1—22(Xi_7)2}(xi—x), (2.21)

which is no longer a best linear predictor; indeed, it is not even linear in X;’s.

EXAMPLE 2.7 (Poisson hierachy). Suppose that X; | 6; ~ Poisson(60;), i = 1,...,n,
independent, and 0; ~ Gamma(x,f3), i = 1,...,n, independent. Then the linear Bayes
estimator of 0; based on X; is

0i(Xiu) = ——+ X, (2.22)

where u = E(0;) = «f. The BLUE of u is i = X. Thus, replacing «f in the equation for
the Bayes estimator, we obtain the EB estimator

(o L . B &
5:(Xi, Q) = X B (2.23)
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which is also the BLUP (2.3) of 0; obtained in Corollary 2.2 under the present setup.
Note that if f is also unknown, then there is no BLUP of 6;.

EXAMPLE 2.8 (a regression model). Consider estimation of 0; in the following re-
gression model: X; | 0; ~ N(0;,0%) for i = 1,...,n, independent, and 0; ~ N(«x +
Bti, %) fori=1,...,n, where & and § are unknown parameters. Then the linear Bayes

estimator of 0; is
2 T2
0i (Xi, i) =

o2+712 Hit o2+T12 Xy (2.24)

where p; = o+ Bt;. Recall that the BLUEs of « and B are the least squares estimators

given by

> (Xi=X)(ti—t)
S(ti-t)°

where t = n~1 > t;. Therefore, the BLUE of p; is [i; = & + Eti. Substituting fi; for y; in

the Bayes estimator yields the EB estimator

&=X-Bi, B= (2.25)

2 2

o
o2+712

T

0i(Xi, i) = (&+Bt:) +

It is easy to see that the EB estimator (2.26) is also the BLUP (2.4) of 6; under the
present setup. Again, the EB estimator (2.26) can also be obtained as a hierachical
Bayes predictor, by appending the specification (&, ) ~ Uniform(—oo, ) X (—o0,00)
to the hierachy in the present example. If T2 is unknown, we can use the fact that
E[S.(X;— &+ Bt)?]! = (n—4) (02 +T2) to construct the EB estimator

(n—-4)o?
S (Xi— &+ Bti)°

which is, again, neither linear nor unbiased for 0;.

&+/§ti+[1— }(Xi—&—ﬁti), (2.27)

REMARK 2.9. Generally speaking, an empirical Bayes estimator can be thought of
as a two-stage estimator. Specifically, consider the Bayes model Y; | 0 ~ f(y | 0),
i=1,...,nand 0 | u ~ (O | u), where E(0) = u. We, first, obtain an estimate of
u, H(y), based on the marginal distribution of Y = (Y7,...,Y,) with density f(y |
w) = [(IT, f(yi | 8))TT(0 | u)dO. Then, we substitute [i(y) for y in (0 | u) and
determine the estimator that minimizes the empirical posterior loss [ L(0,5(y))T(0 |
v, U(y))d0. This minimizing estimator is the empirical Bayes estimator. This argument
is mathematically equivalent to first obtaining the Bayes estimator 6(Y,u) and then
substituting u by [i(y) (see, e.g., Lehmann and Casella [11, Chapter 4]).

In the present context, our proposed empirical Bayes estimators can be obtained by
minimizing the posterior loss [(0 —a; —b;Y;)>1(0 | y,[i(y))dO. Our empirical Bayes
argument is somewhat equivalent to the two-stage approach suggested by Bulmer
[1, pages 208-209] for the prediction problem of v in the mixed model of Y = XB+Zv +
e: first form a vector of the data Y corrected for the fixed effects by Y, = Y—Xﬁ, where
ﬁ is the BLUE of B, and then, under normality assumptions, v is predicted by E(v | Y¢).
Note that our argument, however, make no reference to normality assumptions and
can be applied for more general models.
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3. Proofs. In this section, we provide proofs of the results presented in Section 2.

PROOF OF THEOREM 2.1. Write

- 2

n

Tl‘(C)ZE zcinjQi:|

Lj=1

C n 2

=F zcij(Xij)+zCij9j9i:| (31)
j=1 J=1

[ n 2 n 2
=F ZCij(Xj_@j)} +E|:Zcij9j_9i:| +CPT,

j=1

where

n n
CPT = ZE[ D> ocii(Xi—05) || > cij0;-0;

Jj=1 Jj=1

=2F zCUU%—Qﬂ ZCU%—Qi
j=1 Jj=1

=0.

The first term of the right-hand side of (3.1) can be evaluated as

n n
D CHE(X—0)) + Y cijeuE (X;—0,) (X~ 04)
Jj=1 Jj*k

2
E[ > cii(X; —91)}
=

= > cAV(X;-0)) (3.3)

The second term on the right-hand side of (3.1) is equal to

= (3.4)

n 2 n 2 n
E|:ZCU'0J'—01':| =E|:ZC1'J'91:| +E(0§)—2E(0i2c1j01)
j=1 j=1
n
>

2 n
=E|: Cij91:| +E(0§)—2E(0i2c1j01).
Jj=1

j=1
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Using the independence of 0;’s and by the restriction Z?: 1CijHj = Mj, we have

E(@i Z Cijej) = Z cijE(Gjei)

=1 =1

n

= z CijE(QjQi) +CiiE(9i2)
Jj=i

N (3.5)

= Z CijHilj +Cii(V(6i) +ui2)

Ve
= (i — ciipi) i + cii (T2 + pf)

2 2
=Hi TCiHTs,

2
-Saee (S 36

Now combining (3.4) to (3.6), we obtain

2

n n

E[ZCijej—Qi:| =T2Zcfj+ui2+(T2+uf)—2(uf+cii'r2)
j=1 j=1

(3.7)

T2

2 2 2
ij+T —2CiT .

IVE

c
1

J

The proof of (2.1) is now completed by combining (3.1), (3.3), and (3.7).
In order to find the values of c;; that minimize #;(c) subject to the restriction
Z;Ll CijH;j = Hi, we use the Lagrange multiplier method. Write

n n n
Vi(C) = zciszj+T2(ZCi2j+l—2Cii) +p<ui— Cl’j[.lj), (3.8)
j=1 j=1 j=1

and we find solutions to the equations 0r;/dc;j = 0 subject to the condition Z?: 1CijMj =
ui.Forj+iand j=1,...,n,

ori
801' = 2D1C1j+2T2Cij —PH;j,
5 (3.9)
aC'l' =2Djcj; +2T2Cii - 2T2 —PHi.
ii
Now 07;/0c;j = 0 implies for j#iand j=1,...,n,
* L (3_10)

U 2D+ 272’
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and 07;/dci; = 0 implies

* _ 2T2+p“i

ci = 3D 212" (3.11)
Using these facts together with Z}Ll cijM; = pi implies that
.D;(D;+7%)""
p= 21( i )2 . (3.12)
i H;[2(Dj+72)]
The proof is now completed by combining (3.10), (3.11), and (3.12). O

PROOF OF COROLLARY 2.2. When u; = u for all j = 1, the restriction Z;‘:I CijHj =
u; reduces to Z;‘:l ¢ij = 1forall i > 1. We now minimize

n n n
ri(c) = Z CiZJ-Dj+T2 ( z Ci-zj—i-l—ZCii) +pPo (1— z Cl‘j), (3.13)
j=1 j=1

Jj=1
with respect to ¢;; subject to Z;‘:l ¢ij = 1. The solutions of 07;/dc;; = 0 are

* _ 27+ po.
i 2Di+2T2’

* Po

Cij = ZDJ'+2T2’ (3.14)

for j = i; c

where

_ Di(Di+T2)71
St l2(pi+T2)]

Po (3.15)

Now, by rearranging the terms in Zc;;.Yj with the above choices of the cl-*j follows
the desired result. O

PROOF OF COROLLARY 2.3. We minimize

n n n
ri(c) = z Ci-Zij+T2<Z Cizj+1—2Cii> +p1 (ti— Z CijtJ‘), (3.16)
Jj=1

J=1 J=1

with respect to ¢;; subject to Z;’:l c¢ijt; = ti. The rest of the proof is now similar to
the proof of Theorem 2.1. a

PROOF OF COROLLARY 2.4. Similar to the proof of Corollary 2.3. a
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PROOF OF THEOREM 2.5. First, we write

(e <))

=S B~ 00 (¥,-00) 1+ 3 cyentr [E((Y, - 00 (Y- 0)')].

j*k
(3.17)
Note that
E((Y;-6:)(Y;-6:)) =E((Y;-0,)(Y;-60;)) +E((6;-6:)(0;-6:)")
E((0;-0;)(Y;—6;) )+E((YJ 0,)(6,-6:)")
=E(D(Y;10;))+D(0;-6;) (3.18)
- E(D(Yj10;))+2v, forj=i,
e 6)), for j = i.
Also, for 1 < j + k <n—1, we have
E((Y;—0:)(Yk—0;)) =E[E((Y;— 0;) (Yx—0:)" | 0;,04)]
=E((6;-6:)(6x-0,))
= E[E((6,-6:)(6x—6,)") | 6] (3.19)
=D(0:)
=V.
For all other cases, that is, for j # k and either j = n or k = n, we have
E((Y;-0;)(0;—-0:)) =E[E((Y;-0;)(0;-0:) 10;,0)] (3.20)

=0.

Now, combining (3.18), (3.19), and (3.20) and then substituting in (3.17), we obtain
after some simplification R(c;,8;) = 31—y j.; ¢4 tr[E(D(Y; | 6))) + V]1+c tr[E(D(Y; |
0:))] + (1 — ci1)?tr(V). This proves (2.17). The derivation of (2.18) easily follows
from (2.17) subject to the restriction that Z}Ll cij = 1. This completes the proof of

Theorem 2.5. O
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