

ASYMPTOTIC HÖLDER ABSOLUTE VALUES

E. MUÑOZ GARCIA

Received 12 October 2001

We prove that asymptotic Hölder absolute values are Hölder equivalent to classical absolute values. As a corollary we obtain a generalization of Ostrowski's theorem and a classical theorem by E. Artin. The theorem presented implies a new, more flexible, definition of classical absolute value.

2000 Mathematics Subject Classification: 12J20, 12J10, 16W80, 13J99.

1. Introduction. Asymptotic Hölder absolute values generalize the notions of classical absolute value and of Hölder absolute value. A Hölder absolute value (HAV) satisfies an approximate triangle inequality and multiplicative property. More precisely, let $C_1 \geq 1$ and $C_2 \geq 1$. A (C_1, C_2) -Hölder absolute value on a ring R is a mapping $\|\cdot\| : R \rightarrow \mathbb{R}_+$ satisfying:

- (HAV1) for $x \in R$, $\|x\| = 0 \Leftrightarrow x = 0$;
- (HAV2) for $x, y \in R$, $\|x + y\| \leq C_2(\|x\| + \|y\|)$;
- (HAV3) for $x, y \in R$, $C_1^{-1}\|x\|\|y\| \leq \|xy\| \leq C_1\|x\|\|y\|$.

It is known that HAV on a ring are Hölder equivalent to a classical ones. More precisely, we have the following theorem (see [2]).

THEOREM 1.1 (Hölder rigidity). *Let $\|\cdot\| : R \rightarrow \mathbb{R}_+$ be a (C_1, C_2) -Hölder absolute value on a commutative ring R with unit element. There exists an absolute value on R , $|\cdot| : R \rightarrow \mathbb{R}_+$, which is (C_1^α, α) -Hölder equivalent to $\|\cdot\|$ with $\alpha = \log_2(2C_2)$, that is, for $x \in R$,*

$$C_1^{-\alpha}|x|^\alpha \leq \|x\| \leq C_1^\alpha|x|^\alpha. \quad (1.1)$$

Moreover, $|\cdot|$ can be defined by

$$|x| = \lim_{n \rightarrow +\infty} \|x^n\|^{1/na}. \quad (1.2)$$

For a ring R with unity, a real constant $C_2 \geq 1$, and a function $C_1(\cdot, \cdot)$ defined on $[1, +\infty[\times \mathbb{N}$ taking values in $[1, +\infty[$, we define a (C_1, C_2) -asymptotic Hölder absolute value (AHAV) on R ,

$$|\cdot| : R \rightarrow \mathbb{R}_+, \quad (1.3)$$

satisfying the three following axioms:

- (AHAV1) $|x| = 0$ if and only if $x = 0$;
- (AHAV2) for $x, y \in R$, $|x + y| \leq C_2(|x| + |y|)$;

(AHAV3) for $\gamma > 1$ and $n \geq 2$ there is a constant $C_1(\gamma, n) > 1$ such that for $x_1, \dots, x_n \in R$,

$$C_1(\gamma, n)^{-1} |x_1|^{\gamma^{-1}} \cdots |x_n|^{\gamma^{-1}} \leq |x_1 \cdots x_n| \leq C_1(\gamma, n) |x_1|^\gamma \cdots |x_n|^\gamma, \quad (1.4)$$

$$\text{and } L = \overline{\lim}_{n \rightarrow \infty} (1/n) \log C_1(\gamma, n) < +\infty.$$

We prove the following theorem.

THEOREM 1.2. *Let R be a commutative ring with unity. Let $C_2 \geq 1$ be a real constant, $\alpha = 1/\log_2(2C_2)$, and $\|\cdot\|$ a (C_1, C_2) -AHAV on R . We have the following dichotomy:*

(i) *if*

$$\overline{\lim}_{n \rightarrow \infty} \frac{1}{n} \log C_1(\gamma, n) = 0, \quad (1.5)$$

then $\|\cdot\|^\alpha$ is a classical absolute value on R ;

(ii) *if*

$$0 < L = \overline{\lim}_{n \rightarrow \infty} \frac{1}{n} \log C_1(\gamma, n) < +\infty, \quad (1.6)$$

then $\|\cdot\|^\alpha$ is a Hölder absolute value on R , more precisely, it is $(e^{L\alpha}, \alpha)$ -Hölder equivalent to an absolute value on R .

As a result of [Theorem 1.2\(i\)](#), we can define classical absolute values as AHAV with $C_2 = 1$ having a sequence of constants $(C_1(\gamma, n))_n$ growing sub-exponentially, that is,

$$\overline{\lim}_{n \rightarrow \infty} \frac{1}{n} \log C_1(\gamma, n) = 0. \quad (1.7)$$

This is far more flexible than the classical definition.

Note that, in general, Hölder equivalence is a metric property which is stronger than the usual topological equivalence, for example, $\{0\} \cup \{1/n; n \geq 1\}$ and $\{0\} \cup \{1/2^n; n \geq 1\}$ are homeomorphic, but not Hölder equivalent.

COROLLARY 1.3. *Consider $|\cdot| : R \rightarrow \mathbb{R}^+$ satisfying*

(AV1) *$|x| = 0$ if and only if $x = 0$,*

(AV2) *for $x, y \in R$, $|x+y| \leq |x| + |y|$ then,*

(AV3) *for $x, y \in R$, $|xy| = |x||y|$ is equivalent to:*

(AV3') *for $\gamma > 1$ and $n \geq 2$ there is a constant $C_1(\gamma, n) > 1$ such that for $x_1, \dots, x_n \in R$,*

$$C_1(\gamma, n)^{-1} |x_1|^{\gamma^{-1}} \cdots |x_n|^{\gamma^{-1}} \leq |x_1 \cdots x_n| \leq C_1(\gamma, n) |x_1|^\gamma \cdots |x_n|^\gamma \quad (1.8)$$

$$\text{with } \overline{\lim}_{n \rightarrow \infty} (1/n) \log C_1(\gamma, n) = 0.$$

Our theorem gives a generalization for discrete rings of Artin's theorem [\[1\]](#).

COROLLARY 1.4. *If $\|\cdot\|$ is a $(1, C_2)$ -AHAV over a discrete field F , there exists an absolute value $|\cdot|$ and an exponent α , such that for all x in F , $\|x\|^\alpha = |x|$.*

Also, our theorem implies a generalization of Ostrowski's theorem [\[3\]](#) for classical absolute values ($C_1 = C_2 = \gamma = 1$) over \mathbb{Z} .

COROLLARY 1.5. *If $\|\cdot\|$ is a (C_1, C_2) -AHAV over \mathbb{Z} normalized, so that $\|1\| = 1$, then $\|\cdot\|$ is $(e^{L\alpha}, \alpha)$ -Hölder equivalent to a p -adic absolute value $|\cdot|_p$ or to $|\cdot|_\infty$ or to the trivial absolute value, with $\alpha = 1/\log_2(2C_2)$.*

REMARKS. (1) The constant $C_1(\gamma, n)$ in the definition of AHAV can be chosen to satisfy the inequality

$$C_1(\gamma, n) \leq C_1(\gamma^{1/(\lceil \log_2 n \rceil + 1)}, 2)^n, \quad (1.9)$$

where $\lceil a \rceil$ denotes the integer part of a .

(2) Let $C_2 \geq 1$ and let $|\cdot|: R \rightarrow \mathbb{R}_+$ be a (C_1, C_2) -AHAV on R . If $\overline{\lim}_{\gamma \rightarrow 1} C_1(\gamma, 2) = C_1 < +\infty$, then $|\cdot|$ is a (C_1, C_2) -Hölder absolute value.

(3) If R is a ring on which a (C_1, C_2) -AHAV $|\cdot|$ is defined, then R is a discrete ring for the topology defined by $|\cdot|$.

1.1. Weak subadditive lemma. We prove a generalization of a classical lemma on subadditive sequences (which might be of independent interest).

DEFINITION 1.6. The real sequence $(b_m)_{m \in \mathbb{N}}$ is weakly subadditive if

(i) for $\gamma > 1$ and $k \geq 1$, there is a constant $K(\gamma, k) > 0$ such that for $m_1, \dots, m_k \in \mathbb{N}$,

$$b_{m_1 + \dots + m_k} \leq \gamma \sum_{i=1}^k b_{m_i} + K(\gamma, k); \quad (1.10)$$

(ii) for $\gamma > 1$, we have $K^*(\gamma) = \overline{\lim}_{k \rightarrow \infty} (1/k)K(\gamma, k) < +\infty$.

LEMMA 1.7. *If $(b_m)_{m \in \mathbb{N}}$ is weakly subadditive, then*

$$\overline{\lim}_{m \rightarrow \infty} \frac{b_m}{m} = \overline{\lim}_{m \rightarrow \infty} \frac{b_m}{m}. \quad (1.11)$$

PROOF. Fix $n \geq 1$. For any $m \in \mathbb{Z}$, we consider the Euclidean division

$$m = nq + r, \quad 0 \leq r < n. \quad (1.12)$$

Now,

$$b_m = b_{nq+r} \leq \gamma(qb_n + b_r) + K(\gamma, q+1). \quad (1.13)$$

Dividing by m ,

$$\frac{b_m}{m} = \frac{b_{nq+r}}{nq+r} \leq \gamma \left(\frac{q}{nq+r} b_n + \frac{b_r}{nq+r} \right) + \left(\frac{q+1}{nq+r} \right) \frac{K(\gamma, q+1)}{q+1}. \quad (1.14)$$

Taking the upper limit when $m \rightarrow \infty$,

$$\overline{\lim}_{m \rightarrow \infty} \frac{b_m}{m} \leq \gamma \left(\frac{b_n}{n} + 0 \right) + \frac{1}{n} K^*(\gamma). \quad (1.15)$$

That is, for all $q \geq 1$,

$$\overline{\lim}_{m \rightarrow \infty} \frac{b_m}{m} \leq \gamma \frac{b_n}{n} + \frac{1}{n} K^*(\gamma). \quad (1.16)$$

Now, taking the lower limit on the right side when $n \rightarrow \infty$,

$$\overline{\lim}_{m \rightarrow \infty} \frac{b_m}{m} \leq \gamma \lim_{n \rightarrow \infty} \frac{b_n}{n}. \quad (1.17)$$

This holds for all $\gamma > 1$, thus making $\gamma \rightarrow 1$,

$$\overline{\lim}_{m \rightarrow \infty} \frac{b_m}{m} \leq \overline{\lim}_{m \rightarrow \infty} \frac{b_m}{m}, \quad \overline{\lim}_{m \rightarrow \infty} \frac{b_m}{m} = \underline{\lim}_{m \rightarrow \infty} \frac{b_m}{m}. \quad (1.18)$$

□

1.2. Proof of Theorem 1.1

LEMMA 1.8. Define $\|\cdot\| : R \rightarrow \mathbb{R}_+$ by $\|\|x\|\| = \|x\|^\alpha$. Then, $\|\cdot\|$ is a $(C_1^\alpha, 2)$ -AHAV on R .

PROOF. (AHAV1) $\|\|x\|\| = 0$ if and only if $\|x\| = 0$ if and only if $x = 0$.

(AHAV2) $\|x + y\| = \|x + y\|^\alpha \leq (2C_2)^\alpha (\max(\|x\|, \|y\|))^\alpha \leq 2(\|x\|^\alpha + \|y\|^\alpha) = 2(\|\|x\|\| + \|\|y\|\|)$.

(AHAV3) For all $\gamma > 1$ and for all $n \geq 2$ there is a constant $C_1(\gamma, n)^\alpha > 1$ such that for all x_1, \dots, x_n in R ,

$$\begin{aligned} (C_1(\gamma, n))^{-\alpha} \|\|x_1\|\|^{\gamma^{-1}} \cdots \|\|x_n\|\|^{\gamma^{-1}} \\ \leq \|\|x_1 \cdots x_n\|\| \leq C_1(\gamma, n)^\alpha \|\|x_1\|\|^\gamma \cdots \|\|x_n\|\|^\gamma. \end{aligned} \quad (1.19)$$

□

LEMMA 1.9. Let $x \in R$ and define the real sequence $(a_n)_{n \in \mathbb{N}}$ by $a_n = \|\|x^n\|\|$. The sequence $(a_n^{1/n})$ is converging and

$$e^{-L} \|\|x\|\| \leq \lim_{n \rightarrow \infty} a_n^{1/n} \leq e^L \|\|x\|\|, \quad (1.20)$$

where $L = \overline{\lim}_{n \rightarrow \infty} (1/n) \log C_1(\gamma, n) < +\infty$.

PROOF. Let $b_m = \log a_m$. The sequence $\{b_m\}$ is weakly subadditive, since for all $\gamma > 1$ and for all $k \geq 1$ there is a constant $K(\gamma, k) = (C_1(\gamma, k))^\alpha$, such that

$$b_{m_1 + \dots + m_k} \leq \gamma \sum_{i=1}^k b_{m_i} + \log K(\gamma, k), \quad (1.21)$$

and for all $\gamma > 1$,

$$\lim_{k \rightarrow +\infty} \frac{1}{k} \log K(\gamma, k) < +\infty. \quad (1.22)$$

Therefore, by Lemma 1.7,

$$\overline{\lim}_{m \rightarrow \infty} \frac{b_m}{m} = \overline{\lim}_{m \rightarrow \infty} \frac{b_m}{m}. \quad (1.23)$$

Thus, to prove the convergence of $\{a_n^{1/n}\}$, we only have to prove that $\{a_n^{1/n}\}$ is bounded.

Let $\gamma > 1$, for $n \in \mathbb{N}$ there is $C_1(\gamma, n)^\alpha$ satisfying

$$C_1(\gamma, n)^{-\alpha} \|\|x\|\|^{n/\gamma} \leq \|\|x^n\|\| \leq C_1(\gamma, n)^\alpha \|\|x\|\|^{n\gamma}. \quad (1.24)$$

Taking n th roots,

$$C_1(\gamma, n)^{-\alpha/n} \|x\|^{1/\gamma} \leq a_n^{1/n} \leq C_1(\gamma, n)^{\alpha/n} \|x\|^\gamma. \quad (1.25)$$

Since $L = \overline{\lim}_{n \rightarrow \infty} (1/n) \log C_1(\gamma, n) < +\infty$, we obtain

$$e^{-\alpha L} \|x\|^{1/\gamma} \leq \lim_{n \rightarrow \infty} a_n^{1/n} \leq e^{\alpha L} \|x\|^\gamma. \quad (1.26)$$

This inequality holds for any $\gamma > 1$. Taking the limit when $\gamma \rightarrow 1$,

$$e^{-\alpha L} \|x\| \leq a_n^{1/n} \leq e^{\alpha L} \|x\|. \quad (1.27)$$

□

Now we define that $|\cdot| : R \rightarrow \mathbb{R}_+$ by $|0| = 0$ and that $|x| = \lim_{n \rightarrow \infty} \|x^n\|^{1/n}$ for $x \neq 0$.

LEMMA 1.10. *The function $|\cdot| : R \rightarrow \mathbb{R}_+$ defined as above is an absolute value on R . Moreover, if $\overline{\lim}_{n \rightarrow +\infty} (1/n) \log C_1(\gamma, n) = 0$, then $|x| = \|x\|^\alpha$ for all $x \in R$.*

PROOF. From [Lemma 1.9](#), if $\overline{\lim}_{n \rightarrow \infty} (1/n) \log C_1(\gamma, n) = 0$, we obtain

$$\|x\| \leq |x| \leq \|x\|. \quad (1.28)$$

That is, $|x| = \|x\|^\alpha$.

□

It is clear that, $|x| = 0$ if and only if $x = 0$. Next we check the multiplicative property. For $\gamma > 1$ and for $n \geq 2$ there exists $C_1(\gamma, 2)^\alpha > 1$, such that for $n \in \mathbb{N}$ and x, y in R ,

$$\begin{aligned} & C_1(\gamma, 2)^{-\alpha} \|x^n\|^{1/\gamma} \|y^n\|^{1/\gamma} \\ & \leq \|x^n\| \|y^n\| \leq C_1(\gamma, n)^\alpha \|x^n\|^\gamma \|y^n\|^\gamma. \end{aligned} \quad (1.29)$$

Taking n th roots and passing to the limit when $n \rightarrow +\infty$, we obtain

$$|x|^{\gamma-1} |y|^{\gamma-1} \leq |xy| \leq |x|^\gamma |y|^\gamma. \quad (1.30)$$

Taking the limit when $\gamma \rightarrow 1$, we have the desired multiplicative property.

Finally, we have to check the triangle inequality. This is a corollary of the following general proposition that gives an equivalent, apparently weaker, definition of absolute value.

PROPOSITION 1.11. *Let R be a commutative ring with unity. Let $|\cdot| : R \rightarrow \mathbb{R}_+$ be a function satisfying the following three properties:*

- (A1) $|x| = 0$ if and only if $x = 0$;
- (A2) (approximate triangle inequality) there exists a real constant $B > 0$, such that for all x, y in R , $|x+y| \leq B(|x|+|y|)$;
- (A3) for x, y in R , $|xy| = |x||y|$.

Then, $|\cdot|$ is an absolute value on R , that is, $|\cdot|$ satisfies the triangle inequality.

LEMMA 1.12. *For $x, y \in R$,*

$$|x+y| \leq B(|x|+|y|) \leq 2B \max(|x|, |y|). \quad (1.31)$$

LEMMA 1.13. *Let $|\cdot|': R \rightarrow \mathbb{R}_+$, such that for $x, y \in R$,*

$$|x + y|' \leq M \max(|x|', |y|'), \quad (1.32)$$

for some positive constant M . Then for $x_1, x_2, \dots, x_n \in R$,

$$\left| \sum_{i=1}^n x_i \right|' \leq M^{\lceil \log_2 n \rceil + 1} \max_{1 \leq i \leq n} (|x_i|'), \quad (1.33)$$

where $[a]$ denotes the integer part of a .

PROOF. Let $m = \lceil \log_2 n \rceil + 1$ and complete the sequence $(x_i)_{1 \leq i \leq n}$ into $(x_i)_{1 \leq i \leq 2^m}$ adjoining 0 elements.

$$\begin{aligned} \left| \sum_{i=1}^{2^m} x_i \right|' &\leq M \max \left(\left| \sum_{i=1}^{2^{m-1}} x_i \right|', \left| \sum_{i=2^{m-1}+1}^{2^m} x_i \right|' \right) \\ &\leq M^2 \max \left(\left| \sum_{i=1}^{2^{m-2}} x_i \right|', \left| \sum_{i=2^{m-2}+1}^{2^{m-1}} x_i \right|', \left| \sum_{i=2^{m-1}+1}^{3 \cdot 2^{m-2}} x_i \right|', \left| \sum_{i=3 \cdot 2^{m-2}+1}^{2^m} x_i \right|' \right) \quad (1.34) \\ &\leq \dots \leq M^m \max_{1 \leq i \leq 2^m} |x_i|'. \end{aligned}$$

□

LEMMA 1.14. *Let $\bar{\mathbb{Z}}$ be the image of \mathbb{Z} in R . For $n \in \mathbb{N}$,*

$$|\bar{n}| \leq 2n|1|. \quad (1.35)$$

PROOF. We use [Lemma 1.13](#) with $M = 2$ and $|\cdot|' = |\cdot|$. Take $m = \lceil \log_2 n \rceil + 1$, $n \leq 2^m \leq 2n$, and $x_i = 1$ for $1 \leq i \leq n$. We have

$$|n| = \left| \sum_{i=1}^n x_i \right| \leq 2^m |1| \leq 2n|1|. \quad (1.36)$$

□

LEMMA 1.15. *Let $\bar{\mathbb{Z}}$ be the image of \mathbb{Z} in R . For $n \in \mathbb{N}$,*

$$|\bar{n}| \leq n. \quad (1.37)$$

PROOF. Using [Lemma 1.14](#),

$$|\bar{n}^k| = |\bar{n}^k| \leq 2n^k|1|, \quad (1.38)$$

and $|\bar{n}^k|^{1/k} \leq 2^{1/k} n |1|^{1/k}$. Taking $k \rightarrow +\infty$, we have $|\bar{n}| \leq n$.

□

PROOF OF PROPOSITION 1.11. Let $x, y \in R$ and $n \geq 1$. Let $m = \lceil \log_2 n \rceil + 1$. Using [Lemmas 1.12](#) and [1.14](#), we have

$$\begin{aligned} |(x + y)^n| &= \left| \sum_{i=0}^n \binom{n}{i} x^i y^{n-i} \right| \\ &\leq (B)^m \max_{0 \leq i \leq n} \left| \binom{n}{i} x^i y^{n-i} \right|. \end{aligned} \quad (1.39)$$

Now using [Lemma 1.14](#),

$$\begin{aligned}
 |(x+y)^n| &\leq (2B)^m \max_{0 \leq i \leq n} \left| \binom{n}{i} \right| |x|^i |y|^{n-i} \\
 &\leq (2B)^m \max_{0 \leq i \leq n} \binom{n}{i} |x|^i |y|^{n-i} \\
 &\leq (2B)^m \sum_{i=0}^n \binom{n}{i} |x|^i |y|^{n-i} \\
 &\leq (2B)^m (|x| + |y|)^n.
 \end{aligned} \tag{1.40}$$

Finally,

$$|x+y| = |(x+y)^n|^{1/n} \leq (2B)^{(1/n)([\log_2 n]+1)} (|x| + |y|), \tag{1.41}$$

and passing to the limit $n \rightarrow +\infty$ we get the sharp triangle inequality $|x+y| \leq |x| + |y|$. \square

PROOF OF [THEOREM 1.2](#).

CASE 1. Assume $\overline{\lim}_{n \rightarrow \infty} (1/n) \log C_1(y, n) = 0$. By [Lemma 1.8](#), for all x, y in R we have

$$|x+y| = \||x+y|\| \leq 2(\||x|\| + \||y|\|) \leq 4 \max(\||x|\|, \||y|\|) = 4 \max(|x|, |y|). \tag{1.42}$$

Therefore, by [Proposition 1.11](#), the function $|\cdot|$ satisfies the triangle inequality.

CASE 2. Assume $0 < L = \overline{\lim}_{n \rightarrow \infty} (1/n) \log C_1(y, n) < +\infty$. From [Lemma 1.9](#), for any x in R ,

$$e^{-\alpha L} \||x|\| \leq |x| \leq e^{\alpha L} \||x|\|. \tag{1.43}$$

Therefore,

$$|x+y| \leq e^{\alpha L} \||x+y|\| \leq 2e^{\alpha L} (\||x|\| + \||y|\|) \leq 2e^{2\alpha L} (|x| + |y|). \tag{1.44}$$

Thus by [Proposition 1.11](#), the function $|\cdot|$ satisfies the triangle inequality, it is an absolute value, and $\|\cdot\|^\alpha$ is $(e^{L\alpha}, \alpha)$ -equivalent to $|\cdot|$. \square

REFERENCES

- [1] E. Artin, *Theory of Algebraic Numbers*, George Striker, Göttingen, 1959.
- [2] E. Muñoz García, *Hölder absolute values are equivalent to classical ones*, Proc. Amer. Math. Soc. **127** (1999), no. 7, 1967–1971.
- [3] A. Ostrowski, *Über einige Lösungen der Funktionalgleichung $\phi(x) \cdot \phi(y) = \phi(x \cdot y)$* , Acta Math. **41** (1914), 271–284 (German).

E. MUÑOZ GARCIA: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, 405 HILGARD AVENUE, LOS ANGELES, CA 90095-1555, USA

E-mail address: munoz@math.ucla.edu

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk