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We prove that asymptotic Hölder absolute values are Hölder equivalent to classical abso-
lute values. As a corollary we obtain a generalization of Ostrowski’s theorem and a classi-
cal theorem by E. Artin. The theorem presented implies a new, more flexible, definition of
classical absolute value.
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1. Introduction. Asymptotic Hölder absolute values generalize the notions of clas-

sical absolute value and of Hölder absolute value. A Hölder absolute value (HAV) sat-

isfies an approximate triangle inequality and multiplicative property. More precisely,

let C1 ≥ 1 and C2 ≥ 1. A (C1,C2)-Hölder absolute value on a ring R is a mapping

‖·‖ : R→R+ satisfying:

(HAV1) for x ∈ R, ‖x‖ = 0� x = 0;

(HAV2) for x,y ∈ R, ‖x+y‖ ≤ C2(‖x‖+‖y‖);
(HAV3) for x,y ∈ R, C−1

1 ‖x‖‖y‖ ≤ ‖xy‖ ≤ C1‖x‖‖y‖.
It is known that HAV on a ring are Hölder equivalent to a classical ones. More

precisely, we have the following theorem (see [2]).

Theorem 1.1 (Hölder rigidity). Let ‖·‖ : R→R+ be a (C1,C2)-Hölder absolute value

on a commutative ring R with unit element. There exists an absolute value on R, | · | :

R→R+, which is (Cα1 ,α)-Hölder equivalent to ‖·‖withα= log2(2C2), that is, for x ∈ R,

C−α1 |x|α ≤ ‖x‖ ≤ Cα1 |x|α. (1.1)

Moreover, |·| can be defined by

|x| = lim
n→+∞

∥∥xn∥∥1/na. (1.2)

For a ring R with unity, a real constant C2 ≥ 1, and a function C1(·,·) defined on

]1,+∞[×N taking values in [1,+∞[, we define a (C1,C2)-asymptotic Hölder absolute

value (AHAV) on R,

|·| : R �→R+, (1.3)

satisfying the three following axioms:

(AHAV1) |x| = 0 if and only if x = 0;

(AHAV2) for x,y ∈ R, |x+y| ≤ C2(|x|+|y|);
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(AHAV3) for γ > 1 and n ≥ 2 there is a constant C1(γ,n) > 1 such that for x1, . . . ,
xn ∈ R,

C1(γ,n)−1
∣∣x1

∣∣γ−1 ···∣∣xn∣∣γ−1 ≤ ∣∣x1 ···xn
∣∣≤ C1(γ,n)

∣∣x1

∣∣γ ···∣∣xn∣∣γ, (1.4)

and L= limn→∞(1/n) logC1(γ,n) <+∞.

We prove the following theorem.

Theorem 1.2. Let R be a commutative ring with unity. Let C2 ≥ 1 be a real constant,

α= 1/ log2(2C2), and ‖·‖ a (C1,C2)-AHAV on R. We have the following dichotomy:

(i) if

lim
n→∞

1
n

logC1(γ,n)= 0, (1.5)

then ‖·‖α is a classical absolute value on R;

(ii) if

0< L= lim
n→∞

1
n

logC1(γ,n) <+∞, (1.6)

then ‖·‖α is a Hölder absolute value on R, more precisely, it is (eLα,α)-Hölder

equivalent to an absolute value on R.

As a result of Theorem 1.2(i), we can define classical absolute values as AHAV with

C2 = 1 having a sequence of constants (C1(γ,n))n growing sub-exponentially, that is,

lim
n→∞

1
n

logC1(γ,n)= 0. (1.7)

This is far more flexible than the classical definition.

Note that, in general, Hölder equivalence is a metric property which is stronger than

the usual topological equivalence, for example, {0}∪{1/n; n ≥ 1} and {0}∪{1/2n;

n≥ 1} are homeomorphic, but not Hölder equivalent.

Corollary 1.3. Consider |·| : R→R+ satisfying

(AV1) |x| = 0 if and only if x = 0,

(AV2) for x,y ∈ R, |x+y| ≤ |x|+|y| then,

(AV3) for x,y ∈ R, |xy| = |x||y| is equivalent to:

(AV3′) for γ > 1 and n≥ 2 there is a constant C1(γ,n) > 1 such that for x1, . . . ,xn ∈
R,

C1(γ,n)−1
∣∣x1

∣∣γ−1 ···∣∣xn∣∣γ−1 ≤ ∣∣x1 ···xn
∣∣≤ C1(γ,n)

∣∣x1

∣∣γ ···∣∣xn∣∣γ (1.8)

with limn→∞(1/n) logC1(γ,n)= 0.

Our theorem gives a generalization for discrete rings of Artin’s theorem [1].

Corollary 1.4. If ‖ · ‖ is a (1,C2)-AHAV over a discrete field F , there exists an

absolute value |·| and an exponent α, such that for all x in F , ‖x‖α = |x|.
Also, our theorem implies a generalization of Ostrowski’s theorem [3] for classical

absolute values (C1 = C2 = γ = 1) over Z.
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Corollary 1.5. If ‖·‖ is a (C1,C2)-AHAV over Z normalized, so that ‖1‖ = 1, then

‖·‖ is (eLα,α)-Hölder equivalent to a p-adic absolute value | · |p or to | · |∞ or to the

trivial absolute value, with α= 1/ log2(2C2).

Remarks. (1) The constant C1(γ,n) in the definition of AHAV can be chosen to

satisfy the inequality

C1(γ,n)≤ C1
(
γ1/([log2n]+1),2

)n, (1.9)

where [a] denotes the integer part of a.

(2) Let C2 ≥ 1 and let |·| : R→R+ be a (C1,C2)-AHAV on R. If limγ→1C1(γ,2)= C1 <
+∞, then |·| is a (C1,C2)-Hölder absolute value.

(3) If R is a ring on which a (C1,C2)-AHAV | · | is defined, then R is a discrete ring

for the topology defined by |·|.
1.1. Weak subadditive lemma. We prove a generalization of a classical lemma on

subadditive sequences (which might be of independent interest).

Definition 1.6. The real sequence (bm)m∈N is weakly subadditive if

(i) for γ > 1 and k≥ 1, there is a constantK(γ,k) > 0 such that form1, . . . ,mk ∈N,

bm1+···+mk ≤ γ
k∑
i=1

bmi+K(γ,k); (1.10)

(ii) for γ > 1, we have K∗(γ)= limk→∞(1/k)K(γ,k) <+∞.

Lemma 1.7. If (bm)m∈N is weakly subadditive, then

lim
m→∞

bm
m

= lim
m→∞

bm
m
. (1.11)

Proof. Fix n≥ 1. For any m∈ Z, we consider the Euclidean division

m=nq+r , 0≤ r < n. (1.12)

Now,

bm = bnq+r ≤ γ
(
qbn+br

)+K(γ,q+1). (1.13)

Dividing by m,

bm
m

= bnq+r
nq+r ≤ γ

(
q

nq+r bn+
br

nq+r
)
+
(
q+1
nq+r

)
K(γ,q+1)
q+1

. (1.14)

Taking the upper limit when m→∞,

lim
m→∞

bm
m

≤ γ
(
bn
n
+0

)
+ 1
n
K∗(γ). (1.15)

That is, for all q ≥ 1,

lim
m→∞

bm
m

≤ γ bn
n
+ 1
n
K∗(γ). (1.16)
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Now, taking the lower limit on the right side when n→∞,

lim
m→∞

bm
m

≤ γ lim
n→∞

bn
n
. (1.17)

This holds for all γ > 1, thus making γ → 1,

lim
m→∞

bm
m

≤ lim
m→∞

bm
m
, lim

m→∞
bm
m

= lim
m→∞

bm
m
. (1.18)

1.2. Proof of Theorem 1.1

Lemma 1.8. Define |‖·‖| : R→ R+ by |‖x‖| = ‖x‖α. Then, |‖·‖| is a (Cα1 ,2)-AHAV

on R.

Proof. (AHAV1) |‖x‖| = 0 if and only if ‖x‖ = 0 if and only if x = 0.

(AHAV2) |‖x +y‖| = ‖x +y‖α ≤ (2C2)α(max(‖x‖,‖y‖))α ≤ 2(‖x‖α + ‖y‖α) =
2(|‖x‖|+|‖y‖|).

(AHAV3) For all γ > 1 and for all n ≥ 2 there is a constant C1(γ,n)α > 1 such that

for all x1, . . . ,xn in R,

(
C1(γ,n)

)−α∣∣∥∥x1

∥∥∣∣γ−1 ···∣∣∥∥xn∥∥∣∣γ−1

≤ ∣∣∥∥x1 ···xn
∥∥∣∣≤ C1(γ,n)α

∣∣∥∥x1

∥∥∣∣γ ···∣∣∥∥xn∥∥∣∣γ. (1.19)

Lemma 1.9. Let x ∈ R and define the real sequence (an)n∈N by an = |‖xn‖|. The

sequence (a1/n
n ) is converging and

e−L|‖x‖| ≤ lim
n→∞a

1/n
n ≤ eL|‖x‖|, (1.20)

where L= limn→∞(1/n) logC1(γ,n) <+∞.

Proof. Let bm = logam. The sequence {bm} is weakly subadditive, since for all

γ > 1 and for all k≥ 1 there is a constant K(γ,k)= (C1(γ,k))α, such that

bm1+···+mk ≤ γ
k∑
i=1

bmi+ logK(γ,k), (1.21)

and for all γ > 1,

lim
k→+∞

1
k

logK(γ,k) <+∞. (1.22)

Therefore, by Lemma 1.7,

lim
m→∞

bm
m

= lim
m→∞

bm
m
. (1.23)

Thus, to prove the convergence of {a1/n
n }, we only have to prove that {a1/n

n } is

bounded.

Let γ > 1, for n∈N there is C1(γ,n)α satisfying

C1(γ,n)−α|‖x‖|n/γ ≤
∣∣∥∥xn∥∥∣∣≤ C1(γ,n)α|‖x‖|nγ. (1.24)
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Taking nth roots,

C1(γ,n)−α/n|‖x‖|1/γ ≤ a1/n
n ≤ C1(γ,n)α/n|‖x‖|γ. (1.25)

Since L= limn→∞(1/n) logC1(γ,n) <+∞, we obtain

e−αL|‖x‖|1/γ ≤ lim
n→∞a

1/n
n ≤ eαL|‖x‖|γ. (1.26)

This inequality holds for any γ > 1. Taking the limit when γ → 1,

e−αL|‖x‖| ≤ a1/n
n ≤ eαL|‖x‖|. (1.27)

Now we define that |·| : R→R+ by |0| = 0 and that |x| = limn→∞|‖xn‖|1/n for x ≠ 0.

Lemma 1.10. The function |·| : R→R+ defined as above is an absolute value on R.

Moreover, if limn→+∞(1/n) logC1(γ,n)= 0, then |x| = ‖x‖α for all x ∈ R.

Proof. From Lemma 1.9, if limn→∞(1/n) logC1(γ,n)= 0, we obtain

|‖x‖| ≤ |x| ≤ |‖x‖|. (1.28)

That is, |x| = ‖x‖α.

It is clear that, |x| = 0 if and only if x = 0. Next we check the multiplicative property.

For γ > 1 and for n≥ 2 there exists C1(γ,2)α > 1, such that for n∈N and x,y in R,

C1(γ,2)−α
∣∣∥∥xn∥∥∣∣γ−1∣∣∥∥yn∥∥∣∣γ−1

≤ ∣∣∥∥xn∥∥∣∣∣∣∥∥yn∥∥∣∣≤ C1(γ,n)α
∣∣∥∥xn∥∥∣∣γ∣∣∥∥yn∥∥∣∣γ. (1.29)

Taking nth roots and passing to the limit when n→+∞, we obtain

|x|γ−1 |y|γ−1 ≤ |xy| ≤ |x|γ|y|γ. (1.30)

Taking the limit when γ → 1, we have the desired multiplicative property.

Finally, we have to check the triangle inequality. This is a corollary of the following

general proposition that gives an equivalent, apparently weaker, definition of absolute

value.

Proposition 1.11. Let R be a commutative ring with unity. Let |·| : R → R+ be a

function satisfying the following three properties:

(A1) |x| = 0 if and only if x = 0;

(A2) (approximate triangle inequality) there exists a real constant B > 0, such that for

all x,y in R, |x+y| ≤ B(|x|+|y|);
(A3) for x,y in R, |xy| = |x||y|.
Then, |·| is an absolute value on R, that is, |·| satisfies the triangle inequality.

Lemma 1.12. For x,y ∈ R,

|x+y| ≤ B(|x|+|y|)≤ 2Bmax
(|x|,|y|). (1.31)
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Lemma 1.13. Let |·|′ : R→R+, such that for x,y ∈ R,

|x+y|′ ≤Mmax
(|x|′,|y|′), (1.32)

for some positive constant M . Then for x1,x2, . . . ,xn ∈ R,

∣∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣∣
′

≤M[log2n]+1 max
1≤i≤n

(∣∣xi∣∣′), (1.33)

where [a] denotes the integer part of a.

Proof. Let m = [log2n]+1 and complete the sequence (xi)1≤i≤n into (xi)1≤i≤2m

adjoining 0 elements.

∣∣∣∣∣∣
2m∑
i=1

xi

∣∣∣∣∣∣
′

≤Mmax



∣∣∣∣∣∣

2m−1∑
i=1

xi

∣∣∣∣∣∣
′

,

∣∣∣∣∣∣
2m∑

i=2m−1+1

xi

∣∣∣∣∣∣
′

≤M2 max



∣∣∣∣∣∣

2m−2∑
i=1

xi

∣∣∣∣∣∣
′

,

∣∣∣∣∣∣
2m−1∑

i=2m−2+1

xi

∣∣∣∣∣∣
′

,

∣∣∣∣∣∣
3·2m−2∑
i=2m−1+1

xi

∣∣∣∣∣∣
′

,

∣∣∣∣∣∣
2m∑

i=3·2m−2+1

xi

∣∣∣∣∣∣
′

≤ ··· ≤Mm max
1≤i≤2m

∣∣xi∣∣′.

(1.34)

Lemma 1.14. Let Z be the image of Z in R. For n∈N,

|n̄| ≤ 2n|1|. (1.35)

Proof. We use Lemma 1.13 with M = 2 and |·|′ = |·|. Take m = [log2n]+ 1,

n≤ 2m ≤ 2n, and xi = 1 for 1≤ i≤n. We have

|n| =
∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣≤ 2m|1| ≤ 2n|1|. (1.36)

Lemma 1.15. Let Z be the image of Z in R. For n∈N,

|n̄| ≤n. (1.37)

Proof. Using Lemma 1.14,

∣∣nk∣∣= ∣∣n̄k∣∣≤ 2nk|1|, (1.38)

and |n̄k|1/k ≤ 21/kn|1|1/k. Taking k→+∞, we have |n̄| ≤n.

Proof of Proposition 1.11. Let x,y ∈ R and n ≥ 1. Let m = [log2n]+1. Using

Lemmas 1.12 and 1.14, we have

∣∣(x+y)n∣∣=
∣∣∣∣∣∣
n∑
i=0

(
n
i

)
xiyn−i

∣∣∣∣∣∣
≤ (B)m max

0≤i≤n

∣∣∣∣∣
(
n
i

)
xiyn−i

∣∣∣∣∣ .
(1.39)
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Now using Lemma 1.14,

∣∣(x+y)n∣∣≤ (2B)m max
0≤i≤n

∣∣∣∣∣
(
n
i

)∣∣∣∣∣|x|i|y|n−i

≤ (2B)m max
0≤i≤n

(
n
i

)
|x|i|y|n−i

≤ (2B)m
n∑
i=0

(
n
i

)
|x|i|y|n−i

≤ (2B)m(|x|+|y|)n.

(1.40)

Finally,

|x+y| = ∣∣(x+y)n∣∣1/n ≤ (2B)(1/n)([log2n]+1)(|x|+|y|), (1.41)

and passing to the limitn→+∞we get the sharp triangle inequality |x+y| ≤ |x|+|y|.

Proof of Theorem 1.2.

Case 1. Assume limn→∞(1/n) logC1(γ,n) = 0. By Lemma 1.8, for all x,y in R we

have

|x+y| = |‖x+y‖| ≤ 2
(|‖x‖|+|‖y‖|)≤ 4max

(|‖x‖|,|‖y‖|)= 4max
(|x|,|y|).

(1.42)

Therefore, by Proposition 1.11, the function |·| satisfies the triangle inequality.

Case 2. Assume 0< L= limn→∞(1/n) logC1(γ,n) <+∞. From Lemma 1.9, for any

x in R,

e−αL|‖x‖| ≤ |x| ≤ eαL|‖x‖|. (1.43)

Therefore,

|x+y| ≤ eαL|‖x+y‖| ≤ 2eαL
(|‖x‖|+|‖y‖|)≤ 2e2αL(|x|+|y|). (1.44)

Thus by Proposition 1.11, the function | · | satisfies the triangle inequality, it is an

absolute value, and ‖·‖α is (eLα,α)-equivalent to |·|.
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