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ON THE DIOPHANTINE EQUATION x2+p2k+1 = 4yn
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It has been proved that if p is an odd prime, y > 1, k ≥ 0, n is an integer greater than or
equal to 4, (n,3h)= 1 where h is the class number of the fieldQ(√−p), then the equation
x2+p2k+1 = 4yn has exactly five families of solution in the positive integers x, y . It is
further proved that when n = 3 and p = 3a2 ± 4, then it has a unique solution k = 0,
y = a2±1.
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1. Introduction. The purpose of this note is to compute positive integral solutions

of the equation x2+p2k+1 = 4yn, where p is an odd prime and n is any integer greater

than or equal to 3. The special case when p = 3 and k= 0 was treated by Nagell [7] and

Ljunggren [3] who proved that this equation has the only solutions y = 1 and y = 7

with n = 3. Later on, Ljunggren [4, 5], Persson [8], and Stolt [9] studied the general

equation x2 +D = 4yn and proved that it has a solution under certain necessary

conditions on D. Le [2] and Mignotte [6] proved that the equation D1x2+Dm2 = 4yn

has a finite number of solutions under certain conditions on m and n but did not

compute these solutions. We will prove the following theorem.

Theorem 1.1. The Diophantine equation

x2+p2k+1 = 4yn, y > 1, (1.1)

where p is an odd prime, k≥ 0, n is an integer greater than or equal to 4, (n,3h)= 1,

where h is the class number of the field Q(√−p) has exactly five families of solutions

given in Table 1.1.

Table 1.1

p n k x y

7 5 5M 11·75M 2·72M

7 13 13M 181·713M 2·72M

7 7 7M+1 13·77M 2·72M

11 5 5M 31·115M 3·112M

19 7 7M 559·197M 5·192M

We start by the usual method of factorizing in the field Q(√−p), then we use a

recent result of Bilu et al. [1], about primitive divisors of a Lucas number.

We start by giving some important definitions.
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Definition 1.2. A Lucas pair is a pair (α,β) of algebraic integers, such that α+
β and αβ are nonzero coprime rational integers and α/β is not a root of unity.

Given a Lucas pair (α,β), we define the corresponding sequence of Lucas numbers

by un(α,β)= (αn−βn)/(α−β) (where n= 0,1,2, . . .).
A prime number p is a primitive divisor of un(α,β) if p divides un, but does not

divide (α−β)2u1u2 ···un−1.

The following result has been proved in [1].

Lemma 1.3. For n> 30, the nth term of any Lucas sequence has a primitive divisor.

Also in [1], for 5 ≤ n ≤ 30, all values of the pairs (α,β) have been listed for which

the nth term of the Lucas sequence un(α,β) has no primitive divisors.

We first consider the case when (p,x)= 1 and prove the following theorem.

Theorem 1.4. Equation (1.1), where n and p satisfy the conditions of Theorem 1.1,

has no solution in the positive integers x when (p,x)= 1 except when p = 7,11, or 19.

Proof. First suppose that n is an odd integer. Without loss of generality, we can

suppose that n is an odd prime. Factorizing (1.1), we obtain

(
x+pk√−p

2

)
·
(
x−pk√−p

2

)
=yn. (1.2)

We can easily verify that the two numbers on the left-hand side are relatively prime

integers in Q(√−p). So that

x+pk√−p
2

=
(
a+b√−p

2

)n
, (1.3)

where a and b are rational integers such that a≡ b(mod2) and 4y = a2+pb2, where

(a,pb)= 1.

Let

α= a+b
√−p

2
, ᾱ= a−b

√−p
2

. (1.4)

Then from (1.3), we get

αn−ᾱn
α−ᾱ = p

k

b
. (1.5)

By equating imaginary parts in (1.3), we can easily conclude from (1.5) that

αn−ᾱn
α−ᾱ =


±1 if (p,n)= 1,

±p if n | p. (1.6)

It can be verified that (α,ᾱ) is a Lucas pair as defined earlier and the only positive

prime divisor of the corresponding nth Lucas number

un = α
n−ᾱn
α−ᾱ (1.7)
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is p which is not a primitive divisor because it divides (α− ᾱ)2 = pb2. So the Lucas

number defined in (1.7) has no primitive divisors. Using Lemma 1.3 and [1, Table 2],

we deduce that (1.1) has no solutions when n > 13. When 5 ≤ n ≤ 13, again using [1,

Table 2], we find all values of α for which the Lucas number un(α,β) has no primitive

divisors. We consider each value of n separately.

When n = 13, then α = (1+√−7)/2 which correspondingly gives k = 0, a = 1,

b = 1, p = 7 and consequently, y = (a2+pb2)/4 = 2, x = 181 is the only solution of

the equation x2+p2k+1 = 4y13.

When n= 11, there is no α for which u11(α,ᾱ) has no primitive divisors and so no

solution of (1.1).

When n = 7, the values of α for which u7(α,ᾱ) has no primitive divisors, are α =
(1+√−7)/2,(1+√−19)/2 which give y = 2 as a solution of x2+73 = 4y7 (x = 13)
andy = 5 as a solution of x2+19= 4y7 (x = 559). Similarly, forn= 5, we gety = 2 as

a solution of x2+7= 4y5 (x = 11) and y = 3 as a solution of x2+11= 4y5 (x = 31).
Now we will prove that there is no solution for (1.1) when n is even. It suffices to

consider that n= 4.

Factorizing x2+p2k+1 = 4y4, we get

(
2y2+x)·(2y2−x)= p2k+1. (1.8)

Since (p,x)= (p,y)= 1, then

2y2+x = p2k+1, 2y2−x = 1 (1.9)

which gives 4y2 = p2k+1+1. This can easily be checked to have no solution with y > 1.

Proof of Theorem 1.1. Suppose that p | x. Let x = pλx1, y = pµy1, where

(x1,p)= (y1,p)= 1 and λ,µ ≥ 1. Substituting in (1.1), we get

p2λ ·x2
1+p2k+1 = 4pnµ ·yn1 . (1.10)

We have the following three cases.

Case 1. If 2λ=min(2λ,2k+1,nµ), then

x2
1+p2k−2λ+1 = 4pnµ−2λ ·yn1 . (1.11)

This equation is impossible modulo p unless nµ − 2λ = 0, and then we get x2
1 +

p2(k−λ)+1 = 4yn1 , where (x1,p) = (y1,p) = 1. According to Theorem 1.4, this equa-

tion has no solution for all n≥ 4 except when n= 13,7,5, k= λ, and n= 7, k= λ+1.

Accordingly, when n = 13, we have 13µ = 2λ, then λ = 13M , µ = 2M and so the

solutions of (1.1) are p = 7, x = 181·713M , y = 2·72M . Similarly, considering n= 5,7,

we get exactly the families of solutions given in the statement of Theorem 1.1.

Case 2. If 2k+1=min(2λ,2k+1,nµ), then

p2λ−2k−1 ·x2
1+1= 4pnµ−2k−1 ·yn1 . (1.12)

This equation is known to have no solution [7].
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Case 3. If nµ =min(2λ,2k+1,nµ), then

p2λ−nµ ·x2
1+p2k+1−nµ = 4yn1 . (1.13)

This equation is possible only if 2λ−nµ = 0 or 2k+1−nµ = 0. If 2λ−nµ = 0, we get

x2
1+p2(k−λ)+1 = 4yn1 , which is an equation of the same form as considered in Case 1.

If 2k+ 1−nµ = 0, we get p(pλ−k−1 ·x1)2 + 1 = 4yn1 , which is known to have no

solution [6]. This completes the proof of Theorem 1.1.

Note 1.5. When n= 3, factorizing (1.1), we get

x+3k
√−3

2
= ε

(
a+b√−3

2

)3

, (1.14)

x+pk√−p
2

=
(
a+b√−p

2

)3

, p ≠ 3, (1.15)

where ε =ω or ω2 and ω is a cube root of unity. From (1.14), we easily deduce that

k = 0 and y = 1 and 7 are the only solutions as proved in [3]. We treat (1.15) by the

same way as before by taking α = (a+b√−p)/2 and ᾱ = (a−b√−p)/2, so we get

(α3−ᾱ3)/(α−ᾱ) = ±1. It can be easily proved that (α,ᾱ) is a Lucas pair as defined

above. Using [1, Table 2], we find the following two values of α for which the Lucas

number u3(α,ᾱ) has no primitive divisors:

α=



m+√±4−3m2

2
, m > 1,

m+
√
±4·3k−3m2

2
, m �≡ 0(mod3),

(1.16)

where (k,m)≠ (1,2).
The first value of α gives b = 1, k= 0 and consequently, p = 3a2±4, y = a2±1, and

x = a(2a2±3) is the solution of (1.1) with n= 3. No solution is found for the second

value of α since p ≠ 3. Hence, we have the following theorem.

Theorem 1.6. The Diophantine equation

x2+p2k+1 = 4y3, (p,x)= 1 (1.17)

has the only solutions k = 0 and y = 1 and 7 when p = 3. When p is a prime greater

than 3, such that (3,h) = 1, where h is the class number of the field Q(√−p), then

it has solutions only if p = 3a2 ± 4, and then the solution is k = 0, y = a2 ± 1, and

x = a(2a2±3).
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