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1. Introduction. In 1956, Grothendieck [5], introduced the Banach-valued sequence
space ¥, (E), the space of absolutely p-summable sequences on a Banach space E,
where he discussed tensor products of £, and E, with 1 < p < . Later, in 1969
Pietsch [8] used Banach-valued sequence spaces ¥, (E), to study p-summing opera-
tors between Banach spaces, also see Diestel et al. [2]. In this paper, we discuss how
local completeness and the strict Mackey convergence condition of E imply local com-
pleteness and the strict Mackey convergence condition in £, (E) in the case 1 < p < .
The case p = o was studied in [1].

2. Definitions and notation. Throughout this paper, (E,t) denotes a Hausdorff lo-
cally convex space over K (R or C) and {p;}jc; denotes the family of continuous
seminorms associated with the topology t on E.

Let D C E be abounded, closed, and absolutely convex set. Denote by Ep = U;_, kD,
and for each x € Ep, pp(x) = inf{r > 0: x € D}, the Minkowski seminorm associated
with D. Now Ep C E and the boundedness of D implies that i : (Ep,pp) — (E,t) is
continuous, and pp is a norm so that, for every j € J there exists r; € R* such that
Pjlep <7ipp.

REMARK 2.1. For each D C E bounded, closed, and absolutely convex, the family of
seminorms {p;} je; can be replaced by an equivalent family {p} } jey such that pfi < pp.
To construct the family {p}} jey we know that there exists 7; > 0 such that p;(x) <
¥ipp (x) for every x € Ep so it suffices to take p} = (1/7¥;)pjif r; > 1, and we will have
p} < pp, for every j € J. For simplicity we will always work with an equivalent family
of seminorms, also denoted by {p;} jc; such that pj(x) < pp(x) holds for every j € J
and x € Ep.

A bounded, closed, and absolutely convex set D C E, called a disk, is a Banach disk
if (Ep,pp) is a Banach space. If every bounded set A C E is contained in a Banach disk
we say that E is locally complete. Let (E,t) satisfies the strict Mackey convergence
condition if for every bounded set A C E, there exists a disk D that contains A such
that the topologies of (E,t) and (Ep,pp) agree on A.
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Every metrizable space satisfies the strict Mackey convergence condition, [7]. In
addition, the strict Mackey convergence condition is preserved under the formation
of closed subspaces, countable products, and countable direct sums, [6]. The strict
Mackey convergence condition for webbed spaces is studied in [3, 4].

REMARK 2.2. Using the family of seminorms {p;} e, it is easy to see that the strict
Mackey convergence condition is equivalent to: for each D there exists j, € J such
that pj,ip = pp.

Let p be a real number such that 1 < p < c. The space ¥, (E) of absolutely p-
summable sequences on E is

ep(E)—{(xn)cE: > P (xn) < o, Vjej}. (2.1)

n=1

The family of seminorms p, ((xn)) = (I pf (xn))VP, j € J, induce a topology of
locally convex space in ¥, (E); we will denote by T this topology.

The space £, (Ep) is defined by ¢, (Ep) = {(xy) C Ep : X1 ph(xn) < 0} and en-
dowed with the topology generated by the norm

© 1/p
Pop ((xn)) = [ > pB(xn)] . (2.2)
n=1

We denote Ap = {(xy) € £,(E) : (xn)nen C D}.
Note that Pp; le, Ep) < Ppp for every j € J since pjlg, < pp.

3. Bounded sets. In this section, we characterize the bounded sets of £, (E) in terms
of the bounded sets of E.

LEMMA 3.1. Let D be a disk in (E,t); then
(i) €p(Ep) < {(xn) € €p(E): {xn} C kD for some k € N};
(ii) if there exists jo € J, depending on D, such that pj,p = pp (i.e., the strict Mackey
convergence condition holds), then {(x;,) € ﬁp(E) : {xn} C kD for some k €
N} C #p (Ep).

PROOF. (i) Let (xy) € €, (Ep). Then S 1lpp(xn)1P < o so that given € = 1 there
exists 19 € N, such that for each n > ng, we have pp (x,) < (X, ph(xn))'? <1 which
means that x,, € D for every n > ng.

Now for i = 1,2,...,1n9 there exists k; > 0 such that x; € k;D. We take k =
max{l,ki,...,kn,}. Then {x,} c kD and we have ¥, (Ep) C {(xn) € €p(E) : {xn} C
kD for some k € N}.

(ii) Let (xn) € {(yn) € €,,(E) :{yn} C kD for some k € N}. Thus x,, € Ep for every
n € N since {x,} C kD.

Now observe that 337_, ppy (xn) = 51 P} (xn) < oo since (x,) € £, (E). Hence in
this case we have the equality €, (Ep) = {(xy) € €, (E) : {xn} C kD for some k € N}.

O

REMARK 3.2. Note that kAp = Ayp for every k € N.
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COROLLARY 3.3. If E satisfies the strict Mackey convergence condition, then
’gp(E)AD :’gp(ED)-

PROOF. It follows from the equality in the proof of Lemma 3.1(ii) that £, (E)a, C
L, (Ep). Now let (xy) € £, (Ep). Then by Lemma 3.1(i), (x) C kD for some k € N so
{xn} C Arp = kAp and (xp) € €, (E) . |

REMARK 3.4. If (E,t) satisfies the strict Mackey convergence condition, then
Ly (E)ap =Cp(Ep) = {(xn) € €, (E) : {xn} C Axp for some k € N}. (3.1)

LEMMA 3.5. (i) pap, ((xn)) = sup{pp (xn) :n € N};
(il) pap((xn)) < pp,((xn)) for every (xn) € £y(Ep).

PROOF. (i) Let s = sup{pp(xy) : n € N}. Then {x,} C sD so {x,} C Asp = SAp
and then pa, ((x,)) < 5. Now take v = pa, ((xy)). Then {x,} C ¥Ap = A,p and then
{xn} € ¥D which means that r > s.

(ii) ppp ((xn)) = (o1 ph(xn))V? = pp(xy) for every n € N. Using (i) we have
Ppp ((xXn)) = pap ((xn)). O

Note that Ap is not bounded in ¥, (E); we need to construct a “smaller” set, in the
sense of boundedness.

Define for each j € J and m € N the set Ap(j,m) = {(xn)n € Ap : pp,((xn)) <M}
and for each B C EP(E), let B* ={x € E:x € {x,} and (x,) € B}.

The next proposition gives a way to look at the bounded sets in £, (E).

PROPOSITION 3.6. If B = {Dx}acr is a fundamental system of bounded disks in
E, then {C = njej{Ap, (j,mj)} : A € A, (m;) € N/} is a fundamental system of -
bounded sets in €y, (E).

PROOEF. Let B C ¥, (E) be a bounded set. Then B* is bounded in E so B* C D, for
some A. For each x € B*, if x € (x;) then given j € J there is some s; such that
pj(x) < ppj((xn)) < sj so that Po; (B) < 8- Now let m; € N be such that s; < m;. We
have B C C =njcjAp, (j,mj). O

REMARK 3.7. (i) If D is bounded in E, then for each j € J, by Remark 2.1 PilEp < PD-
(i) If C is bounded in ¢y, (E), then for each j € J, by Remark 2.1 p,; | £p(E). < p.

4. Main results

PROPOSITION 4.1. If for some D there exists jo € J, such that pj,|p = pp inE, then
PpjlCc = PcC where C = NjejAp(j,m;) in €p(E). Equivalently, if E satisfies the strict
Mackey convergence condition, then £, (E) also satisfies the strict Mackey convergence
condition.

PROOF. Let (xy) € C.Thens = p,, (xn) = (Z;":lp% VP = (S0 ph ()P =
pp(xn) = ppj(xn) for every j € J and n € N. So we have (x,) € NnjcjAp(j,s) =
s[NjejAp(j,1)] € sC. Thus pc((x,)) <s = Poj, (xn) and since C is bounded in €, (E)
we have Pp; < Pc for each j € J; now pple < pc for every j € J, so for j, we have
Ppj,lc = pc.
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Notice that if B is a bounded set in Ep (E), then Po; (B) <mgjforall j € Jwithm; € N
and then B C NjcjAp= (j,mj).
This gives the property we need to characterize the bounded sets in €, (E). a

THEOREM 4.2. If E is locally complete and satisfies the strict Mackey convergence
condition, then (£, (E)c,pc) where C = Njc;Ap(j,m;j) in €, (E), is a Banach space so
Ly, (E) is locally complete.

PROOEF. Let D be a bounded closed disk such that (Ep,pp) is a Banach space and
let C = NjejAp(j,m;). By Remark 2.1 there is a jo € J such that pj,|p = pp. We
will show that (£, (E)c,pc) is a Banach space. By Corollary 3.3 we have £, (E)a, =
4, (Ep) and since C € Ap, ¥, (E)c C €y (E)ap. Let (xK)ken C €p(E)c be a pc-Cauchy
sequence. Thus for every € > 0 there exists N € N such that for every n,m > N we have
pc((xk) —(xk)) < e. Using Remark 3.7(ii) we have that pp; | L(E)c < pc. Hence (xk)
is also a ppj-CauChy sequence and then a ppjo-Cauchy sequence. Thus pp (xk —xk ) =
Pjo (XK —xK) < pp; ((x§) = (x})), then the sequence (x})ken for every n € N is also
a pp-Cauchy sequence in (Ep,pp) which is a Banach space, so there exists z¥ in Ep
such that (xX) converges to z* with respect to the norm pp. Using Remark 3.7(i) we
have pjg, < pp. Hence, we have the following claims.

CLAIM 1. We have that (xX) converges to z* with respect to the seminorm p ; for
every j € J.

CLAIM 2. Consider the sequence formed by the (z¥)en € 4, (Ep). We compute

m
— lm L (k)P
= Jm }L%%pfo (xn) 4.1)
<

. . kP
lim }ggl;pm (xn)

= yll% z Pjo (xﬁ)p
k=1

< lim p,; ((xn))

n—oo

<€+pp;, ((xN)) < o, forsome N € N.

In this last inequality we used x,, = (xX)ren and since itis a Pp jO-Cauchy sequence,
given & > 0, pp;. (xky - Poj (xk) < ppjo((xlj) - (x%)) < & for every n,m > N, so
Poj, ((xp)) < E+0p;, ((xn)). Notice that (x,) is a ppj-Cauchy sequence for every j € J.
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Therefore for j, and consequently for p,,,, then for every € > 0 there is an N € N such
that pp (xk - z%) = pp (xX —lim, .o xX,) = limy, .o pp (XK —xK)) < .
CrAamM 3. The sequence (xX) converges to (z¥)ren in €, (Ep). Since

M e 1/p
Pov (k= (2¥)) = pr%(xii—z")}
| k=1
_ 1/p
N P
< zps<xﬁ—zk>+2}
L k=1 4.2)
1/p
&P L
S R [ JR—
2N 2N 2
N factors

=g, forn>N.

In the first inequality we used Claim 2. This completes the proof of the convergence.

CLAIM 4. We have (z¥)gen € €, (E)c. (xK)ken is a pc-Cauchy sequence so it is
bounded and there is an s € N such that (x¥) c sC. Using Claim 3, (xX) converges
to (z¥) in £, (E)¢ with respect to p,,, and since Po;le,Ep) < Ppp for every j € J the
sequence (xX) is T-convergent to (z¥), it is convergent for each Pp;- Now for each
€ > 0 there exists N; such that p,, ((z%)) < pp, ((zF) = (x})) +p,; (x})) < €+sm; for
every j € J and n = Nj, this means that (zky esCc #,,(E)C.

CLAIM 5. The sequence (xK) converges to (z¥)gen in €, (E)c. Let € > 0, since (xK) is
a pc-Cauchy sequence, there is N € N such that (xfl) - (xfn) € ¢C for every n,m = N.
C is T-closed so (xX) — (T —lim(xk))) € €C; then (xK) - (z¥) € &C for every n = N
which means pc((xX) - (z%)) < & for every n > N.

Notice that this is true for every 1 < p < oo. The case p =  also follows from this
and we get the characterization given in [1], although under a stronger hypothesis.
Here we need E to satisfy the strict Mackey convergence condition. a

LEMMA 4.3. If D C E is t-complete and the net {x)}, is a T-Cauchy net bounded
with respect to pc, that is if there exists s € N such that {x)}x C sC then there exists
z € 2sC such that x) converges to z with respect to the T topology in ¥y (E).

PROOF. Let {x)}A be a T-Cauchy net, x, = (x},x%,...), then for every € > 0 there
exists A; € A such that for every j € J, p;j(xX - x%) < Pp;(xa —xy) < € for every
AA=Ajand k € N. So {x’;}A C D is t-Cauchy for each k € N, and since D is complete
there is a z* such that x’;f converges to z¥ with respect to the topology t for each k € N.
Let z = {z',z%,...}. Then z ¢ D, and for each j € J and k € N we have pj(x’,f—zk) =
p;i(xK—(p;—limy xX)) = limy p; (x¥ - xX,), so raising to the pth power and adding
with respect to k we have

> pilxk-2z4)”

n
lim > p;(xy - 24)"

n
. ; vk kP
lim > limp; (x} - x})
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n
— lim i (kP
_}Lll’gloh)\l’,nl;pj(XA zk)

(o)
<lim > p;(xk-z*)"
G
k=1
:li)\mppj(x;\—x;\r) i

(4.3)
for every A = Aj.

So we have p,; (xa—2z)F = S pj(xk—zKyP < eP for every A > A;. This means that
X converges to z with respect to the topology T. We still need to prove that z € £, (E)

Pp;(2)F = > pi(z)?

k=1
= > pj(zk+xk-xk)?
k=1
<2 [pj(zk_xf)p"‘l’j(xl/\()p] (4.4)
k=1
=27 > pj(Z*=x)" +27 3 pj(x§)”
k=1 k=1

<2PeP +27Pp, (xa)"

<2PeP +2Pm;

(xa € C = NjejAp(j,mj)), then if we let ¢ — 0 we get ppj(z) < 2mj, and finally
ze2Ccil,(E). |

THEOREM 4.4. If D is t-complete, then £, (E)¢ is pc-complete.

PROOE. Let (xK) be a pc-Cauchy sequence; it is clearly pc-bounded and T-Cauchy,
0 (xk) c sC for some s € N. Then by Lemma 4.3, there is a z = (zK) € 2sC ¢ £, (E)¢
such that the sequence (xX) converges to z with respect to the topology T. Note
that Ap is T-closed so Ap(j,m) is also T-closed for every j € J and m € N; then
C = njejAp(j,m;) is T-closed. For € > 0 there is N € N such that (xX) — (xk,) € C for
every n,m > N, and since C is T-closed (x}) — (T —lim(x},)) € €C then (xk) - (z¥) €
£C for every n > N. This means that (xX) converges to (z*) with respect to pc. ]

THEOREM 4.5. IfE is t-complete, then £, (E) is T-complete.

PROOF. The proof of Lemma 4.3 can be repeated here to get the T-completeness
of £, (E). O
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