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CONVEX DYNAMICS IN HELE-SHAW CELLS
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We study geometric properties of a contracting bubble driven by a homogeneous source at
infinity and surface tension. The properties that are preserved during the time evolution
are under consideration. In particular, we study convex dynamics of the bubble and prove
that the rate of the area change is controlled by variation of the bubble logarithmic capacity.
Next we consider injection through a single finite source and study some isoperimetric
inequalities that correspond to the convex and x-convex dynamics.

2000 Mathematics Subject Classification: 30C45, 76S05, 76D99, 35Q35, 30C35.

1. Hele-Shaw problem. We are concerned with the one-phase Hele-Shaw problem
in two space dimensions. Hele-Shaw [13] was the first who described in 1898 the mo-
tion of a fluid in a narrow gap between two parallel plates. A significant contribution
after his work was made in 1945 by Polubarinova-Kochina [26, 27] and Galin [11], and
then, by Saffman and Taylor [31] who discovered viscous fingering in 1958. New in-
terest to this problem is reflected, for example, in a more than 600 item bibliography
made by Gillow and Howison in the workshop of Hele-Shaw free boundary problems
(http://www.maths.ox.ac.uk/~howison/Hele-Shaw).

In our first case the phase domain of a moving viscous fluid is the complement to
a simply connected bounded domain occupied by an inviscid fluid (or an ideal gas).
We call it the outer problem and the problem of suction/injection into a bounded
phase domain is called the inner problem. Two driving mechanisms are considered.
The principal one is suction/injection through a single well at infinity. Another one
is surface tension. When surface tension is zero, the main feature of the process is
cusp formation at the moving interface at a finite blow-up time. Examples of such a
scenario have been known since 1945 [11, 26, 27] and a classification of cusps has been
proposed in [14]. Now we present a simple version of the one-phase planar Hele-Shaw
moving boundary problem with suction/injection through a single well at infinity.
We denote by Q(t) a simply connected domain in the phase z-plane occupied by
the fluid at instant ¢ that contains o as an interior point. The complement to Q(t)
is a simply connected bounded domain D(t). We assume the sink/source to be of
strength Q(t) that in general depends on time. We will never use this dependence
throughout our paper nevertheless we mention that Q (t) can be reduced to a constant
Q by a suitable change of variables. The dimensionless pressure p is scaled so that
0 corresponds to the atmospheric pressure. The dimensionless model of a moving
viscous incompressible fluid is described by the potential flow with a velocity field
V = (V1,V,). The pressure p gives rise to the fluid velocity V= —KVp, where K =
h?/12u is a positive constant, h is the cell gap, and u is the viscosity of the fluid
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(see, e.g., [25]). We set K by a suitable scaling to be equal to 1 and putI'(t) = 0Q(t). With
z = x +1y aparameterization of I'(t) is given by the equation ¢ (x,y,t) = ¢p(z,t) = 0.
The initial situation is represented at the instant t = 0 as Q(0) = Qg, and the boundary
0Qo =T(0) =1 is defined parametrically by an implicit function ¢(x,y,0) = 0. Since
we consider incompressible fluid, we have the equality V -V = 0, which implies that
p is a harmonic function

Vip=0, z=x+iyecQ(t)\{o]}. (1.1a)
The zero-surface-tension dynamical boundary condition is given by
p(z,t) =0 aszeTl(t). (1.1b)

The resulting motion of the free boundary I'(t) is given by the velocity field V on I'(t)
with the normal velocity in the outward direction

Up =V - 1(t), (1.10)

where 71(t) is the unit outer normal vector to I'(t). This condition means that the
boundary is formed by the same set of particles at any time. Near infinity we have
p ~ Qlog./x2+y?2 as x,y — o~ that relates to the homogeneous flow. The value of Q
corresponds to the rate of bubble release caused by air extraction, Q < 0 in the case
of a contructing bubble and Q > 0 otherwise.

We can regard this model as the dynamics of an extending/contracting bubble in a
Hele-Shaw cell. This model has various applications in the boundary value problems
of gas mechanics, problems of metal or polymer swamping, and so forth, where the
air viscosity is neglected. More about this problem is found in [6, 17, 22].

One of the typical properties of problem (1.1) is the fact that its character depends
on the direction of evolution of the free boundary. In the case of fluid suction (Q > 0)
the problem is ill-posed in the Hadamard sense. This means that an arbitrary small
perturbation of the boundary Iy of the initial domain Qg can produce an O (1)-order
deformation of I'(f) in an arbitrary small time t. The injection problem (Q < 0) is
well-posed at least for the weak solution (Elliott and Janowsky [5]).

One of the main features of problem (1.1) is as follows: starting with an analytic
boundary Iy we obtain a one-parameter (t) chain of the solutions p(z,t) (and equiv-
alently ¢(x,y,t)) that exist during a period t € [0,ty) developing possible cusps at
the boundary I'(t) in a blow-up time ty. It is known [36] that in the Hele-Shaw problem
(1.1) the classical solution exists locally in time. Recently [12, 16, 30], it became clear
that this model could be interpreted as a particular case of the abstract Cauchy prob-
lem, thus, the classical solvability (locally in time) may be proved using the nonlinear
abstract Cauchy-Kovalevskaya theorem.

In most practical experiments the zero-surface-tension process is never observed.
An approximation of the practical situation is given by introducing surface tension. At
the same time the nonzero-surface-tension model regularizes the ill-posed problem.
That is why the consideration of the surface tension influence is of importance.

The model with nonzero surface tension is reduced to the condition for the pressure
p on the boundary given by the product of the curvature x of the boundary and surface
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tension y > 0. We rewrite problem (1.1) with the following new conditions:

Vip =0, inzeQt), (1.2)
p=yx(z), onzel(t), (1.3)
vn=—a—p, onzeI(t). (1.4)

on

A similar problem appears in metallurgy in the description of the motion of phase
boundaries by capillarity and diffusion [22]. Condition (1.3) is found in [31] (it is
also known as the Laplace-Young boundary condition, see, e.g., [2], or the Gibbs-
Thomson condition [16]). It takes into account how surface tension modifies the pres-
sure through the boundary interface.

The problem of the solution existence in the nonzero-surface-tension case is more
difficult. Duchon and Robert [3] proved the local existence in time of the weak so-
lution for all y. Recently, Prokert [29] obtained even global existence in time and
exponential decay of the solution near equilibrium for bounded domains. The results
are obtained in Sobolev spaces W2* with sufficiently big s. We refer the reader to the
works by Escher and Simonett [7, 8, 9, 10] who proved the local existence, uniqueness,
and regularity of classical solutions to one- and two-phase Hele-Shaw problems with
surface tension when the initial domain has a smooth boundary. The global existence
in the case of the phase domain close to a disk was proved in [8]. More about results
on existence for general parabolic problems can be found in [10].

Mathematical treatment for the case of the zero-surface-tension model of a con-
tracting bubble was presented in [6]. In particular, the problem of the limiting config-
uration was solved. It was proved that the moving boundary tends to a finite number
of points that gave the minimum to a certain potential. There an interesting problem
was proposed: to describe domains whose dynamics presents only one limiting point.
Howison [17] proved that a contracting elliptic bubble has the homothetic dynamics
to a point (in particular, this is obvious for a circular one). Entov and Etingof [6] have
shown that a contracting bubble which is convex at the initial instant preserves this
property until the moment when its boundary reduces to a point. This type of domains
is called simple in [6].

We will generalize this result proving that if the initial bubble is starlike with respect
to a fixed inner point, then locally in time this property is preserved. Moreover, we
will give some estimates of the rate of the change of the boundary capacity by the rate
of the area change.

2. Polubarinova-Galin equation with surface tension. Inorder to present the equa-
tion for the moving boundary I'(t), we introduce the auxiliar parametric domain which
is the exterior part of the unit disk, and by the Riemann mapping theorem there ex-
ists a unique conformal univalent map F(C,t) from the domain U* = {C : || > 1}
onto the phase domain Q(t), such that F(C,t) =al+ao+a-1/C+---, a> 0. The
function F(Z,0) = Fy(C) produces a parameterization of Ty = {Fy(e'?), 6 € [0,21)}
and the moving boundary is parameterized by I'(t) = {F(e!?,t), 0 € [0,27)}. The
normal velocity v, of T'(t) in the outward (with respect to Q(t)) direction is given
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by v, = —0p/on. Later on, throughout the paper we use the notations F = 0F /0t,
F’' =0F/0oC.

We introduce the complex potential W(z,t), z € Q(t), so that ReW(z,t) = p(z,t).
Then Vp = W’, and near infinity we have the expansion

Q

Wi(z,t) = 10gz+wo(z t), asz~ oo, (2.1)

where wq(z,t) is a regular function in Q(t).
The normal outer vector at the boundary I'(t) is given by the formula

FI

n=-C—-, € oU*. (2.2)
C P C
Therefore, the normal velocity is obtained as
. ow _ F'
vn—V-n——Re<a—Z IF’\>' (2.3)

The superposition Wo F(C,t) is an analytic function in U* \ {0} and has a logarithmic
singularity about infinity. Its real part solves the Dirichlet problems (1.2) and (1.3),
therefore,

i Q _L 21 i el +§
WoF(C,t) = log§ - x(e t) §d1§’+1C (2.4)
Differentiating (2.4) we get
i0 i0
f (€, t)=5= Q y %de CeU™. (2.5)

2 o (ei0 — ;)
Integrating by parts we obtain

Q  y (Moxel+g
C f(?;) J 30 00— gale (2.6)

21T 211
On the other hand, we have v,, = —ReFei®F’/|F’|, and applying the Sokhotskil-Plemelj
formulae [23] we, finally, get

ReF(C,0TF T = 5= —y(H[ig—g]w)), 2.7)

C = e'? where the Hilbert transform in (2.7) is of the form

21 l[J(éio,)dQ'

1—eil0-0") (2.8)

1
H = ——p.V.
[y](0) TPV
Galin [11] and Polubarinova-Kochina [26, 27] first have derived (2.7) for y = 0 and
gave rise to deep investigation in this direction. So, (2.7) for y = 0 is known as the
Polubarinova-Galin equation (see, e.g., [14, 19, 20]).
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Equation (2.7) yields a Lowner-Kufarev type equation making use of the Schwarz-
Poisson formula

F=CFpr(Ct), CeU*, (2.9)
where
_1qe 1 Q Ox e?+¢
prgt) =5 JO ;f/(eie,t)|2(2n yH[tae](G))eie_ng. (2.10)

We call (2.9) a Lowner-Kufarev type equation because of the analogy with the linear
partial differential equation that describes the homotopy deformation of a simply
connected univalent domain to the initial one (see, e.g., [1, 4, 28]). The classical Lowner-
Kufarev equation produces a subordination Lowner chain. Unlike the classical Lowner-
Kufarev equation, equation (2.9) is not quasilinear, contains an integral operator pp,
and produces a special type of chain (nonsubordinate in general). Nevertheless, it is
quickly noticed that in the case of extending bubble (Q > 0) and small surface tension
y we have ReF(C,t)CF' (C,t) > 0, and the Lowner-Kufarev theory implies that the
chain of the domains Q(t) is subordinate, that is, Q(s) c Q(t) for s > t.

Of course, (2.7) tends to the equation for the zero-surface-tension model as y — 0.
But it turns out that the solution in the limiting y-surface-tension case need not always
be the corresponding zero-surface-tension solution (see the discussion in [32, 33, 34]).
This means that starting with a domain Q(0) = Q(0, y) we come to the domain Q(t,y)
at an instant t using surface tension y and to the domain Q(t) at the same in-
stant ¢ in the zero-surface-tension model. Then the domain lim,_oQ(t,y) = Q(t,0)
is not necessarily the same as Q(t) (see numerical evidence in [2, 24]). Obviously, the
nonzero-surface-tension model never produces cusps, moreover, starting with an an-
alytic boundary Iy the curves I'(t) remain analytic during the time of existence of the
solution.

3. Convex and starlike contracting bubble. A simply connected domain Q on the
Riemann sphere, oo € Q, 0 & Q is said to be starlike if each ray starting at the origin
intersects Q in a ray. Of course, the complement of Q to the Riemann sphere is starlike
with respect to the origin. Let a univalent function F map the exterior part U* of the
unit disk onto Q, so that F(€) # 0 for any £ € U* and F(€) =al+ap+ >, anl™"
about infinity. If Q is starlike, then the function F is also called starlike, F € =*. A
necessary and sufficient condition for a locally univalent function F(C), € € U*, with
the above normalization to be univalent and starlike is the following inequality:

CF'(T)
F(T)

We denote by ty the blow-up time and we consider the dynamics of the contract-
ing bubble in the Hele-Shaw cell. Let F(C,t) be the family of functions satisfying the
Polubarinova-Galin equation (2.7) and Dy = C\ Qq, D(t) = C\Q(t).

Re

>0, CeU*. (3.1)

THEOREM 3.1. Let Q < 0 and surface tension y be sufficiently small. If the initial
domain Qg (and Dy) is starlike with the analytic boundary, then there existst =t(y) <
to, such that the family of domains Q(t) (in sequel, the family of univalent functions
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F(C,t) and the domains D (t)) preserves this property during the time t € [0,t(y)]. In
particular, for y = 0 the family Q(t) preserves this property in so far as the solution
exists and 0 € D(t).

PrROOF. We have that the contracting bubble contains the origin and is starlike
with respect to the origin at the initial instant. If a starlike function F(C) = aC +
ap+a_1/C+--- €X* is defined outside of the unit disk, then the function f(Q) =
1/F(1/C) is holomorphic in the unit disk U and starlike (f € $*) with respect to the
origin. The inequality

cf (@)

R0

>0, CeU (3.2)

provides the necessary and sufficient condition for the function f to be univalent and
starlike.
Equation (2.7) can be rewritten in terms of this holomorphic function as

Ref(C0TF @0 =~ fC0]* (5= -y (H|iSx|@)), (3.3)

IT] =1, Q < 0. If we consider f in the closure of U, then the inequality sign in (3.2)
can be replaced by (=) where equality can be attained for || = 1.

We suppose that there exists a critical map f € $*, which means that the image of
U under the map Cf'(C,t)/f(C,t), |C| = 1 touches the imaginary axis, say there exist
such t' > 0 and Cp = e'%, that

Cof'(Co,t") 1 o
argm = > <0r 2 ), (34)

and for any € > O there are such t > t" and 6 € (6g—¢&,0y + €) that

eiOf"(eiO,t) E E
argif(ei(’,t) > > (or < - > ) (3.5)

For definiteness we put the sign (+) in (3.4). Without loss of generality, assume t" = 0.
Since f’(e'?,t) # 0, our assumption about the sign in (3.4) yields

m Cof' (0,0) 50

£(Z,0) (3.6)

(the negative case is considered similarly).
Since T is a critical point and the image of U under the mapping ¢ f'(Z,0)/f(C,0)
touches the positive imaginary axis at the point £y = e'%, we deduce that

) eief/ (eie,o) 3
305 f(ei0,0) ’9:90 =0 3.7)
0 relf £ (rei Q) ’
or '8 f(rei?,0) re1- = 0.
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Calculation gives

Cof" (C0,0)  Tof'(o,0) | _
Re[1+ R ) }o, (3.8)
Cof"(0,0) _ ToSf"(C0,0) | _
Im[“ F €00 fZ00) }‘0' G2
We derive
cf () f'(C,t) (o/0t)f'(C,t) (9/0t) f(C,1)
a8 e ~ _lgf(C t) Im( gy fEo ) 610

We now differentiate (3.3) with respect to 0. Since the left-hand side is real analytic
with respect to 6 and the solution to (2.7), and therefore to (3.3), exists and is unique,
the right-hand side is differentiable and its derivative is bounded on [0,27T]. Denote
by

Y
A1) = agH[lae](e). 3.11)

Then we have

Im(F'@,t)%F'(c,t)—;F’(gt)F(c,t)—cZF"<c,t>F<§,t>)
(3.12)
_ airamn S Q- . Ox 4
-4l &) (21T yH[zag]<9>)+y|f| A(0,0),

for € = e'?. This equality is equivalent to the following:

(/o) f"(C,t) (a/at>f<§,t>)

7 2
£ &0 Im( &b F TG0

I Cf (D
PGy @D “) G-13)

L41f* Im Cj{ (ﬁ —yH[ ](9)) CYIfI*A, D).

- Imzf'@,t)f(c,t)(

Substituting (3.3), (3.8), and (3.10) in the latter expression we finally have
Cf (€,t)
f(C t) lg=cito,r—0
Q| f(ei®,0)|* e " (e1%,0) ei% f" (e'%,0) et f"(ei%,0)
=== 2 Im(1- - + +6 -
| £ (ei%,0) | f(ei%,0) f'(e%,0) f(ei%,0)

_y%< CJ{[ ](6)+A(9t)>

(3.14)
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The right-hand side of this equality is strictly negative for small y because of (3.6) and
(3.9). Therefore,

(3.15)

i0 £r i@t
arg © f'(e",t) %

Flet) =

for t > 0 (close to 0) in some neighbourhood of 6. This contradicts the assumption
of the existence of the critical map and, equivalently, the hypothesis that Q(t) fails to
be starlike for some t > 0 and ends the proof. |

Of course, we can shift any inner point zy of the bubble to the origin by a linear
transform. So the above result can be rewritten as follows: if we find a point z; in the
initial bubble Dy with respect to which Dy is starlike, then the domains D(t) are also
starlike with respect to the same point z¢ during the existence of the solution or up
to the time when zy € I'(t). This means that if D is simple, z, is a limiting point at
which D(t) contracts, and Dy is starlike with respect to zg, then D(t) remains starlike
up to the instant when all air is removed (there exist nonconvex simple domains, see
[6]).

In particular, a convex domain Dy is starlike with respect to any point from Dy, and
therefore, the convex dynamics is also preserved that was proved earlier in [6].

Now, we present an isoperimetric inequality which implies that the rate of the area
variation of a contracting bubble of zero surface tension is controlled by the rate of
the variation of its capacity.

PROPOSITION 3.2. Denote by S(t) the area of a contracting bubble D (t), andy = 0.
Then S = 2traa, where a = capD (t).

PROOF. A simple application of the Green theorem implies that the rate of the area
change is expressed as S = Q. Let Q < 0. From (2.7) we deduce that

21 21 %
dmar | L d0ca | Re——2 _a0- 2 -5 gig)
4 Jo  |F'(eif,t) | 412 Jo F'(eif,t) 21ta 2mMa

where a = F' (oo, t). O

4. Convex dynamics and integral means. Now we discuss the problem of injection
of a fluid within the complex plane through a finite source that can be thought of as
the origin. The governing equations are of the form

V2p =-Q68(0), inzeQ(t),

p=yx(z), onzel(t), 4.1)
__or
vn——an, onzell(t).

Here p stands for pressure in the phase simply connected bounded domain Q(t)
occupied by the fluid, » is the mean curvature, and y is the surface tension. Q is
negative and corresponds to the strengthen of the source. The problem of injection
is well-posed, Q < 0. We refer the reader to [14, 18, 20, 21, 24] where a lot of curious
features concerning the problem of suction can be found.
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We consider the auxiliar Riemann map z = f(C,t) from the unit disk U onto the
phase domain Q(t), f(0,t) =0, f'(0,t) > 0. The Polubarinova-Galin equation for the
moving boundary I'(t) = 0Q(t) is given as

Re f(C.0CT (€0 = = +y(H] 5] @), 4.2)

C = e'? where the Hilbert transform in (4.2) is of the form

_1 Ty(e?)do’

In [15] we prove that if the initial domain Q is starlike with respect to the origin, then
during the whole time of the existence of the solution to (4.2) the domains Q(t) remain
to be starlike for y = 0, or locally in time for y sufficiently small [35]. Of course, if the
initial domain is convex, then in general, the convex dynamics is not preserved even
in the next instant. But locally in time we can guarantee the convex dynamics if the
initial domain is x-convex. The necessary and sufficient condition for the domain Q
to be convex is the inequality for the Riemann map

cf" (@)
S(©)

A domain (or equivalently a function) is said to be x-convex if the zero in the above
inequality is replaced by a positive number « € (0,1].

Re (1 + ) >0, CeUl. (4.4)

PROPOSITION 4.1. Denote by S (t) the area of the phase domain Q(t). Then S = —Q.

This obvious proposition follows from the statement of the problem as well as from
Green’s theorem.

PROPOSITION 4.2. Let a univalent map z = f(C) be x-convex in U and let f have
the angular derivatives almost everywhere in the unit circle. Then,

21 28(1-) 5 5
—J ——do < B(f—Z(x,f—Z(x), (4.5)
2o | fr(ei0) | T 2 2
where B(-,-) stands for the Euler beta-function. The inequality is sharp. In particular,
2 414 (3 40) (1—400) (1 1
2nJ ele =on - -20) B(E*Z‘X’E*zo‘) @0

for0<ox<1/4.

PROOF. If a function f is «-convex in U, then the analytic function g(z) = zf'(z2)
is x-starlike (Sf%), that is, it satisfies inequality (3.2) replacing 0 by « in its right-hand
side. Functions from S} admit the following known integral representation:

g(z) €St = g(z) =zexp{—2(1—a)JqT 1og(1—ei9z)du(9)}, 4.7)

where u(0) is a nondecreasing function of 0 € [—1r, 7] and fn au(o) =1.
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If u(0) is a piecewise constant function, then we have a set of complex-valued
functions g, (z) that admit the following representation:

z €St Oel-mml, =0, > B=1. (48

gn(z) = _ -
" H;::l(l*el@kz)zu P k=1

Using the known properties of Stieltjes’ integral and Vitali's theorem it is easy to show
that the set of function (4.8) is dense in S, that is, for every function g(z) € S there
exists a sequence {g,(z)} satisfying (4.8) that locally uniformly converges to g(z) in
U. Therefore, we need to prove our result for g(z) = gn(z).

Now, we present a chain of inequalities

21 2 n
J [T[1-ei0-00 | 20-0Pegp
2m ele 0 k-1
a2 40-00
SZW,[ ZBk|1 ell0-0 | ao
1 i(0-0;) | 4(1-x)
_— Z Bk | l1-e k) | do
T 0

21
_ %j 11— |*1"% g0
0

(4.9

41-« 21
= 5 (1-cos0)21-940
0
28-) /5 5
= = B(E—ZD(,E—Z()().

The last assertion of Proposition 4.2 follows from the formulae of reduction of the
beta-function. |

The next theorem follows from Propositions 4.1 and 4.2 similarly to the proof of
Proposition 3.2.

THEOREM 4.3. Let Q(t) be a phase domain occupied by a fluid injected through the
origin with surface tension y = 0, the area of Q(t) be S(t), and a(t) be the conformal
radius of Q(t) with respect to the origin. Then S < 2traa. If, moreover, Q(t) is x-convex
at an instant t, then

2mlaa
280-B(5/2—20,5/2 - 2Q)

< S <2maa. (4.10)
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