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We weaken the open set condition and define a finite intersection property in the con-
struction of the random recursive sets. We prove that this larger class of random sets are
fractals in the sense of Taylor, and give conditions when these sets have positive and finite
Hausdorff measures, which in certain extent generalize some of the known results, about
random recursive fractals.
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1. Introduction. As it is known, the separation conditions, such as the strong sep-
aration condition, the open set condition (OSC), and the strong open set condition,
must be taken into consideration when computing the Hausdorff dimensions of the
random recursive sets. In deterministic cases, Schief [13] proved that the strong open
set condition and the open set condition are both equivalent to oo > #%(K) > 0, where
K is the strictly self-similar set (cf. Hutchinson [9]) in R4, « is the similarity dimen-
sion of K, and #% denotes the Hausdorff measure of this dimension. But in random
cases, we do not have such good results, many authors, such as Cawley and Mauldin
[2], Falconer [3], Graf [6], Mauldin and Williams [12], Arbeiter and Patzschke [1], and
Hu [7, 8], have discussed the fractal properties of the random recursive set K (w), and
the most general result may be: if the open set condition is satisfied in the random
recursive process of i.i.d. contraction similitudes, then dimK (w) = « with probability
one, where « is the unique solution of the equation

N
E> ri=1, (1.1)

and E is the expectation operator and 7; is the Lipschitz coefficients of the similitudes.

Sometimes the open set condition in the construction of recursive sets is complex
and difficult to verify. In this paper, we try to find another criterion to calculate the
fractal dimensions of some random recursive sets, we give a definition of the finite
intersection property (FIP) which allows appropriate overlapping in the same level.
This condition is rather easy to verify, especially in the generalized Moran sets and
Mauldin-Williams (M-W) models [12] (in fact, the open set condition is equivalent to
the nonoverlapping in the same level in the recursive process of M-W models). We
prove that if the recursive process satisfies the OSC, then it satisfies the FIP, and we
give examples which satisfy FIP but do not satisfy OSC; we also prove the following
theorem.
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THEOREM 1.1. Foreverye > 0,if {(Sox1,-..,SoxN), O € D} C sicon(Q, RN satisfies
€-FIP, and {(¥gx1,...,VoxN), O € D} is a family of i.i.d. random elements, then

DimK(w) = dimK(w) = min{x,d} a.e. (1.2)

still holds; furthermore if {(Sosx1,---,SoxN), O € D} C sicon(Q,R4)N satisfies O-FIP, if
Zﬁlrf‘ =1 a.e and x <d, then co > #%(K) > 0 a.e., where « is defined by (1.1), dim
and Dim stand for Hausdorff dimension and Packing dimension, respectively, and #%
is the Hausdorff measure.

2. Preliminaries. Let (QQ,%,P) be a complete probability space, and let (E,p) be a
separable complete metric space. For all f: E — E, we call

p(f(x),f()

Li = su 2.1
p(f) x;cy,xI,:;/eE P(X,J/) ( )

the Lipschitz coefficient of f. Denote
con(E) = {f:Lip(f) <1, f:E— E}. (2.2)

In this paper, we take E to be R4, the Euclidean space. Let con(R%) be equipped with
the usual topology of uniform convergence on compact sets. Let sicon(R%) be the
space of all contraction similitudes, and let sicon(Q,R%) be the space of all random
contraction similitudes.

Let N be a positive integer and let C, = {1,...,N}". Denote by D = lJ,,_, Cy, the fam-
ily of all finite sequences o = (07,...,0,) in {1,...,N}, by |o| = n the length of o € C,,
by TIn = (T1,...,Tna7)) the curtailment for T € D, by 0 T = (01,..., 010, T1,---, T|7|)
the juxtaposition of o and T, by C the infinite sequences o = (01,07,...), and by
[c]l=1{T €C,7||lo|=0} the cylinder in C. For brevity, write S(¢|,0) =Soj1°**-°Ss,
Swo,2) = I, where S; € sicon(Q,R%) for T € D, and I is the identity; 7, = Lip S, and
T(olo) =Yool " Yo-

Throughout the paper, we suppose that ¥ = mingec,, n>1essinfLip(Sy) > 0 and
maXgec, n=1€sssupLip(Sy) < 1, and E is a fixed nonempty compact subset of R4.
For a set J C E, let JO denote the set of interior points of J.

DEFINITION 2.1. Let {(Sgx1,...,S0+n), 0 € D} be a collection of random elements
from (Q,%,P) to con(R4)N. If there exists a nonempty open set O in E, such that for
P-a.e. w,

@ S(oi+1,0%i)(0) CS(ol,0)(0), foralli=1,...,N, o €D.
i) Sqoi+1,0%)(0)NS(o)+1,0%j)(0) =D forall i # j, o € D.

Then the family of {(Ssx1,...,S0xn), 0 € D} satisfies the open set condition (OSC).

For any € > 0, we say that the family {(S¢«1,...,Ss«n), O € D} satisfies the finite
intersection property of level € (in short, e-FIP) if there exists a nonempty compact set
J in E with diam(J) = 0 > 0, JO = J, and a number e > 1 such that for P-a.e. w,

(iii) J(\O'IJrl,O'*i) C J(‘O‘“o') foralli= 1,2,...,N and 0 € D.
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(iv) There exists 6 =6 (¢) > 0, for every M C J with diam(M) < min{r, 5§}, we have

Card HY £ Card {0‘” e D:r*1o <diam (J(o1,0)) <7%0, J(ol,0) "M * @}

(2.3)
< e(diamM) ¢,
where J(o),0) = S(ol,0)(J), Joo,0) = J, k = max{n :diam(M) < r"0}.
REMARK 2.2. Itis clear that if 0 < €; < €, then €;-FIP implies €,-FIP.
REMARK 2.3. If in the definition we have
H
limsup —Card M < (2.4)

diamM)—0 K ’

then, for all € > 0, the family {(Sgx1,...,S04n), O € D} satisfies the e-FIP. Further-
more, if

0 < limsup CardHy <

(2.5)
diam(M)—0 k

exists, then the family {(Ss41,...,S+%n), 0 € D} does not satisfy O-FIP.

For simplicity, we write FIP for O-FIP. Note that if {(Sy41,...,Sexn), O € D} isii.d.,
then K(w) is a statistically self-similar set (cf. [7, 8]). However, if {(*5x1,..,VoxN),
o € D} isii.d., then K(w) need not be a statistically self-similar set [2].

LEMMA 2.4. If the family of {(Sox1,...,So«N), 0 € D} C sicon(Q,E)N satisfies the
OSC, then it satisfies the FIP.

PROOF. Suppose that {(S5x1,...,S+«N), 0 € D} satisfies the OSC, and O is defined
as in (i) and (ii) in Definition 2.1. Take J = O, since S.(O) c O for every T € D, then
Jool+1,0%i) = Stol,0) (Soxi () = S(iol,0) (Soi(0))

_ (2.6)
CS(o1,o) (0) = J(olo)s

this means that (iii) is true.
Without loss of generality, we always assume that diam(J) = 1.Let M c J, diam(M) <
7, by the definition of k, we have diam(M) < »¥. For any o € Hy;, we have

diam(]um,g)) STk, J(ol,oy "M #+ . (2.7)
Hence, there is a closed ball B(x,2r*) with center x in M and radius 27* such that

U Jiolo) C B(x,2r%). (2.8)

o€HM

Now we want to show that, for any o, 7 € Hy with & # T, J{1| 1) N J{|s|.) = @. Note
that, by the definition of Hy, if o, T € Hy, 0 # T, then o and T are incomparable, that
is, neither o | |T| = T nor 7 | |o| = o holds.
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Write o A T being the longest sequence y € D such that y =0 |t = T | t for some
integer k. Let o = (074,...,0), T=(T1,...,Tm), L = |0 AT| <min{n,m}, then

.](O\O—LU—) mJ?IT\,T) = S(l,(r\l) ([S(f\(Hl) O OSU\n(O)] N [ST\(HI) O OST|‘WL(O)])

(2.9)
CSaom (S‘”(”U(O) ﬁST\(Hl)(O)) =Q.
Then, by
diam (J(j¢|,0) = diam (S( o109 (J)) = Lip (S(o1,00),
i d (2.10)
L(Jaole) =LiP (S(al,e)) L),
we have

55( U J(a,a)>2§5( U Jf)g,g)>= > L goler) = (CardHy) (r* 1) 2(J).

o€Hy o€Hy o€Hy
(2.11)
But
SB( U J(la,a)) < L(B(x,2r%)) = (2r*) vy, (2.12)
o€Hy

where ¥ is the Lebesgue measure on R? and V; is the Lebesgue measure of the unit
ball in R4. So,

(2rk) vy

CardHy <
ar: M (Tk+1)d§£(1)

(2.13)

and Lemma 2.4 is proved. O
3. Main results. We always assume that {(Sy41,...,So+n), 0 € D} C sicon(Q,E)Y
and let N = {1,2,...} be the set of positive integers in this section. For almost every
w € Q, for any fixed positive integer i € N, we define a stopping y° : C — N by
assigning to each o € C the value
yO(o) =min{n:ve1 - vep2- Tom <r'} = {n:Lp (Smom) <7}, (3.1)
and let

L(w)={d;=0 |y®(0):0€C}, (3.2)

then for o € C, we have ri*! < diam(J(6,),6,)) = Lip(S(s,1,5,)) < 7. Note that for every
ie{1,2,...}, we have

E( 2. 7’(03,|a>) =L (3-3)

oel;
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PROPOSITION 3.1. If{(Sy«1,...,So«n), O € D} C sicon(Q, R4)N satisfies condition (i)
in Definition 2.1, and {(¥g+1,...,VoxN), O € D} is a family of i.i.d. random elements,
then

DimK(w) <min{x,d} a.e., (3.4)

where K(w) = -1 Ugec, Sn,o (E), and « is the unique solution of (1.1).

PROOF. Let J be the nonempty compact subset of E such that {(Sgx1,...,So%N),
o € D} is of FIP. First, we show that

K= U Suo). (3.5)

n=loeCn

In fact, for o € C,limy—« Sp,oin (E) = {Xs} is a singleton, and limy,—.c Sy,oin(J) = (Vo)
is a singleton also, and since J C E, we have x4, = V¢, so (3.5) holds.

Define a metric p* (o, 7) £v1927D then (C,p*) is a complete, separable, compact,
and totally disconnected metric space [5]. A random code map % : C —» K(w) is
defined by (o) = x4, then for P-a.e. w1t is continuous and 7 (C) = K.

Forall § € (0,7), ko 2 min{k : v**! < 25}, let {B(xi,8),i=1,2,...,N(5)} be a collec-
tion of balls with center x in K and radius 6 (note that N(0) is finite), then there exist
o (i) € C,suchthatx; = w(o(i)),i=1,2,....Note that {B(x;,d)} are disjoint. For each
o (i), there is o (i)k,+1, the curtailment of o (i), such that ko2 < (G0 115D 1)

rko*t1 1f x; # xj, then o (i)g,+1 * O (J)ky+1, Otherwise, if o (i) 41 = 0 (j)y,+1 We have
I - _ - - ko+1 ;
J (5@ 101 = J 10Ty 110> A0 20 > 75070 = diam(J
dist(rr (o), m(0)) = 26, this leads to a contradiction.
Hence, we have

Tkt Dkg 1)) =

E(N(8)rkor2(erey <E[ % diam (B(xi,é))“”r"‘“)

(
¥

1

ore
Z € rk0+1r(a_<i)k0+1yg(i>k0+l)> (3.6)

thus for P-a.e. w,

. logN(8) . log v ko+2)«
hn;fyp — logo < llI}’Slj‘,(l)lp 7105;6 <x+e€ (3.7)

we obtain that, for almost all w, DimK < « + € for arbitrary € > 0, which means that
DimK < min{d, &} a.e. O

LEMMA 3.2. Let T, = X 5cc, rz"nm, then Y = lim,,_. Ty, exists a.e. and E(Y) = 1,
o >Y >0 a.e.
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PROOF. Let ¥,=0{r,,|o| < n}, then {T,,%,} is a martingale, and ET,, = 1 for
n=1,2,..., by the martingale convergence theorem, Y < o a.e. exists, and EY = 1.

The equation Y, = limy e .rcc, (H?:lr(‘;‘*(ﬂt)) exists for all o € D by the similar
argument as above (cf. [1, 12]), and {Y,, 0 € D} have the same distributions as that
of Y by the ii.d. property of {(*45%1,...,76%n), 0 € D} and {Y,, 0 € C,} is an i.i.d.
family. Note that

Y= > 1y, Y, ae (3.8)

oeCp

If P{Y =0} =a, thena =P{Y = Xﬁlrio‘Yi =0} =P{Y;=0N=a", thena =0 or
a = 1. Since EY =1, we have a = 0. The lemma is proved. O

LEMMA 3.3. For P-a.e. w, there is a random measure v® on C satisfying
v([o]) = rﬁm,a)Ym v(C) =Y. 3.9)

PROOF. By the definition of the metric p*, the cylinder [0 ] is both open and closed,
since

[cl={teC:p(t,0) <79} ={teC:p(t,0) <r'7I71} (3.10)

for every o € D. Let % be the collection of all cylinders [o],0 € D, and let & be the
collection of a finite union of disjoint cylinders, where by convention the empty union
is taken to be the empty set &. Then ¢ is an algebra. Define a random set function
v® by v(@) =0, v([o]) =1{, ) Yo, for o € D, then by (3.8) we have that

M=

v([o]) = > v([o*i]), v(iC)=Y ae, (3.11)

1

-
I

so for almost every w, the set function v is well defined. By the compactness of C, it
can be easily seen that if A;,, € # decreases to &, then A;,, = @ for n large enough, so
that v(A,) decreases to &J; this shows that v is a measure on #. In a natural way, we
can extend v to a Borel measure on o (%) (cf. [11]). O

PROPOSITION 3.4. If for every € > 0, {(Sux1,-.-,SoxN), O € D} C sicon(Q,R%)N
satisfying the €-FIP, { ¥gx1,---,VoxN), O € D} is a family of i.i.d. random elements,
then dim(K) > min{«x,d} a.e.

PROOF. Let u®=v@orr~!, then u is a random measure and supp (u) = K, u(K) =
v(C) =Y > 0 a.e. By Proposition 3.1, we have dim(K) < d. For « < d, if we can prove
that for every € > 0, there exists ¥ > 6 > 0 and a random variable o > [;(w) > 0 a.e.
such that if M ¢ J and diam(M) < &, then pu(M) < I, diam(M)*~2¢ a.e., then it follows
from the mass distribution principle, (cf. Falconer [4]), dimK > « a.e.
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In fact,

u(M) :u(MmK) :Von‘l(MmK) sv0n‘1< U J(a|,a))

OEHy

<e(diamM) ¢ max Vcn’l(](m,g)) (3.12)
oeHy,0€D

=e(diamM) - v{T € C:10(T) € J(0ol,00)}

by the e-FIP, where v (J(oy},00)) = max{v(J(y|y)), ¥ € Hu}. If T(T) € J(100],00), then
Ja# 20 NJ(ooloe) * @ and v*+1 < diam(J 7, 1,2,) < 7%, s0 Tk € Hyp,1.00)» @0d by €-FIP

again, there are at most [e(diamM) €] +1 such f,%,...,f,ge'(diamM)fc]”

above property, so

satisfying the

{[TeC:m(T) € Juoylon} €[TR U+ U wfe @am0T], (3.13)
hence
U(M) < 2¢?(diam M) %€ max v[Tl
1<i<[e(diamM)~€]+1
(3.14)
= 2e?(diamM) %€ max &, Y.
i=1,...[e(diamM)—€]+1 (Tl T) " Tk
Since 7} € Hj4y .00 00 € Hu, we have ykl < Y (ai) ) < vk therefore,
Y, diam(M)*~2¢
u(M) < 2e? max —* (3.15)

1<i<[e(diamM)€]+1 r«

take 1} = 2e?max; <i<[e(diamM)~€]+1 Yii/r"‘, note that {Y,, 0 € D} have the same dis-
tribution as Y, so 0 < I; < o a.e., hence we have (M) < I; diam(M)%2€ < o a.e. The
proposition is proved. O

PROPOSITION 3.5. If {(Sgs1,...,Sosn), O € D} C sicon(Q,R4)N satisfies FIP,
{(Fox1,.-,YoxN), O € D} is a family of iid. random elements, and furthermore
Zji\ilri‘" =1 a.e. and x < d, where « is defined in (1.1), then o > H*(K) > 0 a.e.

PROOEF. Since {Jn,o), 0 € Cn}isacovering of K for almostall w € Q,and r,,4) — 0,
we have

E(#*(K)) < E< > r(“n,o)) =1<oo, (3.16)
oelnp
S0 #HX(K) < oo a.e.
Suppose that Z]i\ilri‘" =1 a.e,, then Y =1 a.e. by its definition. If #*(K) < 1/1; a.e,,
then there would be a collection € of sets each with diameter less than » and covering
K such that > pcg diam(E)* < 1/1; a.e. But taking € = 0 in (3.15),

1> > Lidiam(E)* = > pu(E) =2 pu(K) =1 ae. (3.17)
Ee¢ Ee¢

This would lead to a contradiction. So this proposition holds. ]
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Combining Propositions 3.1, 3.4, and 3.5, we obtain Theorem 1.1.

COROLLARY 3.6. In the deterministic case with specific maps {S1,...,Sx}, FIP is equal
to the open set condition.

PROOF. By Proposition 3.5, co > #%(K) > 0, where « is the unique solution of
zﬁl Lip(S;)* = 1. Combining with Schief’s result [13], the corollary is true. O

COROLLARY 3.7. If {(Syx1,-.-,So%n), 0 € D} C sicon(Q,RHN satisfies the FIP,
{(¥o%1,--,YoxN), O € D} is a family of iid. random elements, then dimu =
Dimyu = « a.e., where = vorr 1.

PROOF. For every B(x,h) with center x € K and radius h < r, we have
u(B(x,h)) <1l h* (3.18)

by (3.15), hence

Inu(B(x,h))

nh > a.e. (3.19)

liminf
h—0
On the other hand, there exists o € C, such that m(o) = x, take &, the curtailment of
o, such that (1/2)r**! < |J(s16,) | < (1/2)7k, where k = max{n:h <r"}, so Js|,5) C
B, we have

u(B(x,h)) =vem  (B(x,h)) =verm  (Jio.00) = VIG] =75 6) Yo (3.20)
thus
limw < a.. (3.21)
h—0 Inh
Therefore, dimy = Dimpu = « a.e. a

4. Examples. First, we give an example which satisfies the FIP but not the OSC.

EXAMPLE 4.1. Let J=[0,1],and let N =2, vy41 =1/3, Vo452 =1/27, 0 € D.
(I) The first two steps:

1 1 8
1 _ 1 1 _ .
Sl(X)—SX, SZ(X) 27x+27)
1 1 2 1 8
shi(x) = §x,5112(x) g%ty shix) = TRAETT (4.1)

sh(x) = ! x+(l— ! )
27 X 27 3 27X27
Thus we have four basic intervals.

(IT) The second two steps: as to the interval [0,1/9], we repeat the same construc-
tion technique as in (I). As to the rest of the three basic intervals, we can easily find
maps with ratios {¥g«1,7ox2} = {1/3,1/27} for o € C3 and Cy4, such that the subsets
of all these three basic intervals are disjoint. And so on.
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PROOF. Obviously, we cannot find an open set such that {(Sy41,Ss42), 0 € D}
satisfies OSC, but FIP holds on it. By our theorem, dim(K) = Dim(K) = &, where « is
the solution of (1/3)%+(1/27)% =1.

Then we give an example which satisfies the e-FIP for every € > 0, but does not
satisfy the FIP. |

EXAMPLE 4.2. LetJ =[0,1],andletS;(x) =7rx,S(x)=rx+(1-7r)forl/2<r <1,
then {S1,S»} does not satisfy the OSC. But if v = (5/2-1)/2 is a PV number, then
{(S4x1,S0x2), @ € D} satisfies the FIP, where D = |J,,_; {1,2}™.

PROOF. ByLau’s and Nagi's result in [10], if 7 is a PV number, then {S;,S>} satisfies
the weak separation property, that is, there exist zop € J and a positive integer [ such
that, for any z = S(r,r)(20), every closed rk-ball contain at most [ distinct Stolo) (2),
o €1k, (S(o,0)(2) can be repeated, that is, we allow that S o) (2) = S(s,107)) (2) for
o+0',0,0 €ly).

Denote J(jo|,0) = S(ol,0)(J) for o € D, Definition 2.1(iii) holds obviously. Without
loss of generality, let M be an interval in J with diam(M) < § (6 will be defined in
the following proof), ¥**! < diam(M) < v¥, Hy is the set given in Definition 2.1, let
B = B(x,2rk) be an interval with center x € M and radius 2v*, then Uyecp,, J(ol,0) C
B and M C B. According to [10, Remark 3], “under the weak separation property,
every hrk-ball with h > 0 contains at most [[2h]4 distinct S(4|.0)(2), 0 € I},” for
zp € J and o € Hy, there are at most 4! distinct S(¢,0)(20) € B 0 € Hy C Ik (note
that Iy = Cy in this example). If (1) # 0(2) # --- € Hy, but Sow),ea)(20) =
Sto@)o@n(z0) = ---, then for z; # zg, z; = S(7|,1)(20) for some T € D, we have
at most 41 distinct S(jo-(1)1,0(19) (21),S(102)1,0(2)) (Z1) 5 -+ -, S(jotaly|,ota1y) € B for o (j) € I.

For a fixed j € {1,2,...,41}, if

Sqetnneign (21) = Sueg2),oi2) (21) = -+ = Sqe(Loun (21) (4.2)
for o (ji) € Iy, we get
Stoiegin (X) =Siogpeun (X), Vxel0,11i=1,2,.... 4.3)

By induction, we can get that

N(k) < [%] <k (4.4)

for j =1,...,41, where N (k) is the cardinality of i which satisfies (4.3).
Thus, for every € > 0, let No £ min{k : k < r %€}, take § £ min{r™o,7}, we have
CardHy < (41)%(diam(M)) €. It is easy to show that dimK = DimK = 1. O

EXAMPLE 4.3. Let (Q,%,P) be ((0,1],%(0,1],%). Take J =[0,1], then we will con-
struct a random recursive set, for w € Q, by the following procedure:
(I) The first three steps:

(1) let
+

; (4.5)

1 _X 1 _x
Si(x) = 3 S5 (x) 3

w| N
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(2) let
X X 1\2 1\3
St (x) =SeSi () =3, S%Z(X):?+(<§> _(§) w)’ (4.6)
S =SloSl(x), Sk, =S40S}(x);
(3) let
Shy(x) =St oSt oSH(x),  Shp(x) = S}oStosh(x) = 2+ =
111 1 1 1 ’ 112 1 1 2 27 271
1 1 1 3 L ) 1 2 1 3
s =stus (5)' - staror=sher (5)'-(3) o)
121( ) 112 3 122( ) 112 3 3 (4-7)

S311(x) = 3081 oS (x), S312(x) = S3 081 83 (x),
Shi(x) =5SloSloSl(x), Sho(x) =8toS)oSk(x).

(I1) The second three steps. Replacing [0,1] by [0,1/27], we repeat the above iterative

procedure:
(1) let
st = XEL g3 (xy = XLET L 2)ET, 4.8)
3 3 3
(2) let

S2(x) = SPoSi(x),  Shx)= 12T ((1)2+3— (1)3+3w).

32 3 3 (4.9)
S3(x) = S30S3(x),  S3,(x) =S30S3(x);
3) let
Sty (x) = S7 e SF o ST (x), 3512(’():5%"5%"35(’():X/27+2/27’
27 27
, , 1)3+3 ) ) 1\%*3 1)3%3
Sth1(x) =S +<f) , Stp(x) =S8 +((*> —(*) w),
121 (x) 112 3 122(x) 112 3 3 (4.10)

S311(x) = SFoSFoST(x),  S3i,(x) = SFo St eSF(x),
S3,1(x) = S20S3082(x), Sy (x) = 53083053 (x).

() Replacing [0,1/27]1by [0,1/27x27], we repeat the same iterative procedure again.
And so on.

It is not easy to find an open set O such that {(Syx1,...,Ssxn), O € D} satisfies the
OSC, but we can easily see that for every w € Q, {(Sgx1,.--,Ss%N), O € D} satisfies
the FIP, so according to Theorem 1.1, we obtain that DimK = dimK =In2/In3 a.e. and
the Hausdorff measure of the random set K(w) is finite and positive a.e.
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