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We consider logharmonic mappings of the form f(z) = z|z|?B hg defined on the unit disk
U which are typically real. We obtain representation theorems and distortion theorems.
We determine the radius of univalence and starlikeness of these mappings. Moreover, we
derive a geometric characterization of such mappings.
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1. Introduction. Let H(U) be the linear space of all analytic functions defined in the
unit disk U = {z=x+1iy :|z| < 1} and let B be the set of all functions a € H(U) such
that |a(z)| < 1 for all z € U. A logharmonic mapping is a solution of the nonlinear
elliptic partial differential equation

fz= <af—7)fz; acB. (1.1

Observe that nonconstant logharmonic mappings are open and orientation preserving
on U. If f does not vanish in U, then f is of the form

f=HG, (1.2)

where H and G are in H(U). On the other hand, if f vanishes at zero, but has no other
zeros in U, then f admits the representation

f(z)=z"z|*"h(2)g(2), (1.3)

where

(a) m is a nonnegative integer,

(b) B=a(0)(1+a(0))/(1—a(0)|?) and therefore, R > —1/2,

(c) h and g are analytic in U, g(0) =1 and h(0) = 0.
In particular, a nonconstant orientation-preserving mapping f is the product of an
analytic function and an anti-analytic function if and only if  is a nonnegative integer.

If f is a univalent logharmonic mapping in U, then either O ¢ f(U) and log f is uni-
valent and harmonic on U, or, if £(0) = 0, then f is of the form f(z) = z|z|?Ph(z)g(z)
where R > —1/2 and |h(2)g(z)| # O for z € U, and where F(Z) = log f (%) is univa-
lent and harmonic in the half plane {T : RC < 0}. Such mappings play an important
role in the theory of nonparametric minimal surfaces having a periodic Gauss map.
For details see, for example, [1, 2, 3, 4, 5, 6, 7]. A logharmonic mapping f is said to be
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typically real if and only if f(z) is real whenever z is real, and if f is normalized by
f(0) =0and h(0)g(0) =1 or equivalently by f(0) = 0 and h(0) = g(0) = 1. Denote by
Try the class of all orientation-preserving typically real logharmonic mappings. Since
f is orientation preserving and univalent on the interval (—1,1), it follows that m = 1
in the representation (1.3). Furthermore, if f € Ty, then B (and, hence, also a(0)) has
to be real and we have the relation

3z3f(z)>0, VzeU\R. (1.4)

The class T;j, is a compact convex set with respect to the topology of locally uniform
convergence and it contains, in particular, the set T of all analytic typically real func-
tions. Our aim is to investigate the influence of the anti-analytic part of a logharmonic
functions on the fundamental properties of analytic typically real functions.

In Section 2, we establish the connection between the set of typically real loghar-
monic mappings and the set of analytic typically real mappings (Theorem 2.1) and the
set of logharmonic mappings with positive real part (Theorem 2.3). This leads us to
an integral representation of Tyj. It is interesting to note that the extremal functions
are univalent. As a simple application, we derive a distortion theorem for typically
real logharmonic mappings for the case a(0) = 0 (Theorem 2.6) and determine the
radius of starlikeness of these mappings (Theorem 2.8). In Section 3, we consider
univalent mappings in T;j. For analytic typically real functions, it is known that if
t(z) =z+>,_,anz™is univalent in the unit disk U, then t belongs to T if and only if
the image t(U) is a domain symmetric with respect to the real axis.

A corresponding question for univalent typically real logharmonic functions would
be as follows.

QUESTION 1.1. Let f(z) = z|z|?#h(z)g(z) be a univalent logharmonic mapping
defined on the unit disk, and h(0) = g(0) = 1, B > —1/2. Observe that § (and hence
a(0)) is real. Is it true that f belongs to Ty, if and only if the image of f(U) is a
symmetric domain with respect to the real axis?

The answer will be in both directions negative. We have to add additional conditions
on a(z) and on the image domain Q = f(U) in order to get an affirmative answer of
the question.

2. Basic properties of mappings from T;;,. We start this section with a represen-
tation theorem. We associate with each f(z) = z|z|?fh(z)g(z) € Tip, the analytic
function ¢ =zh/g e T.

THEOREM 2.1. (a) If f is in Ty, then ¢ € T.
(b) Given any ¢ € T and a € B such that B € R and hence a(0) € R, there are
mappings h and g in H(U) uniquely determined such that
i 0¢ hg(U); h(0) =g(0) =1;
(i) ¢ =zh/g;
(iii) the function f(z) = z|z|*#h(z)g(z) € Ty is a solution of (1.1) with respect to
the given a.
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PROOF. (a) Let f(z) = z|z|?fh(2)g(z) € Ty, be given. Then we have

zh(z) f(z)
N =9 =3 s 2.1
¢(Z) g(z) \z|25|g(z)\2 ( )

which implies that ¢ is typically real.
(b) Let ¢ € T and let a € B be given such that a(0) € R. We define

- “sa(s)d'(s) + (als) =1)Bp(s)
9(2) = e | o) K
n(z) = qb(z)zg(z), (2.2)

f(2) =z1z1h(2)9(2) = p(2)121% | g(2) |

Then h and g are nonvanishing analytic functions defined in U, normalized by
h(0) = g(0) =1 and f is a solution of (1.1) with respect to the given a. It remains to
show that f is typically real. Since ¢ (z) is typically real and 3 f (z) = |z|?f| g (2)|? TP (2),
then f is typically real. O

As a direct consequence we have the following corollary.

COROLLARY 2.2. Let f(z) be in Try. Then there exists a ¢ in T such that f admits
the representation

f(2)=zIz1#h(2)g(2) = p(2)121?k | g(2) |, (2.3)

where
sa(s)’(s)+ (a(s) 71)B¢(S)
sp(s)(1—als)) 5

and ¢ =zh/g, a € B, a(0) € R and hence § € R.

g(z) = eXpJ (2.4)

Now consider the subclass 7, of T;; that consists of all mappings F from Ty for
which ¢ =zh/g = z/(1 - z?). Then F(z) is of the form

a(s)(1+s? )/(1fs2)+(a(s)71)3d5_

Fz) =1 s(1—al(s))

IZIZBeXpZ‘RJ (2.5)

Denote by Ppj the class of all logharmonic mappings R defined on the unit disk
U which are of the form R = HG, where H and G are in H(U), H(0) = G(0) = 1 and
such that RR(z) > 0 for all z € U. It contains, in particular, the set P of all analytic
functions with positive real part p normalized by p(0) = 1. A detailed study of this
class can be found in [1].

In the next theorem we give the linkage between the class Ty, and the class Pyj.

THEOREM 2.3. If f(z) = z|z|*#h(2)g(z) € Ty with respect to a € B, a(0) € R
and hence B € R. Then there exists an R € Py, and an F € T}, both functions are
logharmonic with respect to the same a and such that

f(z) =F(z)R(z). (2.6)
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PROOF. Let f(z) = z|z|*#h(z)g(z) € Ty, with respect to a given a € B, a(0) € R.
Let F € T}, with respect to the same a. A simple calculation implies that f(z)/F(z)
is a logharmonic function with respect to the same a. Moreover, we have

%f(z)

F(z)
P(2)|1z|*Pexp2R [5 (sa(s)@'(s) + (a(s) = 1) Bp(s))/(sPp(s) (1 —als)))ds
(z/(1-22))|z|2Pexp2R [§ (a(s)((1+52)/(1-52)) + (a(s)—1)B)/(s(1—a(s)))ds
exp2R [; (sa(s)'(s)+ (a(s) =1)Bp(s))/(sp(s)(1—-a(s)))ds _ 1

_z2
" exp2R[; () (1+5)/ (1-59) + (als) - 1B)(s(1-a)yds 2+ 7
(2.7)

Indeed, ¢ = zh/g € T implies R((1 —z%)¢p(z)/z) > 0 (cf. [8]). Therefore, R(z) =
f(2)/F(2) € Ppp. ]

Our next result is a distortion theorem for the class T}, with a(0) = 0.

LEMMA 2.4. LetF(z) =zh(z2)g(z) € T}, then, forz€ U,
(i) |F(2)] < |z|e?/zl/-1zD;
(i) [Fz(2)] < ((1+z1>)/(1—1z]?)(1—|z[))e?2l/ =120,
(i) |Fz(2)] < (IzI(1+1z]%)/(1=1z]?) (1 —|z]))e?Izl/(0=12D,
Equality occurs if and only if F(z) is one of the functions of the formnF,(nz), |n| =1,
where

F.(z) =

z .

T [1-22|eR(22/(1-2)) (2.8)
PROOF. Let F =zh(z)g(z) € T}, with respect to a given a € B, a(0) = 0. Then F is

of the form

a(s)(1+s?)

Fz)= 1-a(s))(1-s2)

epoQ’\JO 5 ds. (2.9)

1-2z2

For |z| = r, we have

a(z)/z 1 1+2z2 1472 (2.10)
l-az)| 1-7r’ 1-2z2| 7 1-vr2’ ’
Therefore,
¥ r 1+¢2 o orier)
|F(z)| < T2 exp2j0 (1_t)(1_t2)dt—re . (2.11)

Equality occurs if and only if a(z) = nz, |n| = 1 which leads to F(z) = nF.(nz). O
The next lemma is shown in [1].

LEMMA 2.5. LetR(z) = H(z)G(z) € Py, and suppose that a(0) = 0. Then forz € U,
(i) e2121/0-12) < |R(z2)| < e2lz1/(1-12D).

(i) |1R.(2)| < (2/(1—1z))(1—|z|?))e?lzl/(0=IzD.

(iii) |Rz(2)| = (2lz|/(1—|z])(1 —]z|?))e2lzl/A-IzD),



TYPICALLY REAL LOGHARMONIC MAPPINGS 5

Equality occurs for the right-hand side inequalities if R(z) is one of the functions of the
formR.(nz), In| =1, where

e212110-121) (2.12)

R.(z) = 1+z‘1—z

T 1l-zll+z

and for the left-hand side inequality if R(z) is one of the functions of the form

S =1. 2.13
R.(nz) N ( )

Combining Lemmas 2.4 and 2.5 together with Theorem 2.3, we deduce the following
distortion theorem for the class T;; with a(0) = 0.

THEOREM 2.6. Let f(z) =zh(z)g(z) € Typ. Then for z € U,
() 1f(2)] < |z|e*2l/1=12D,
(i) [fz(2)] < ((1+]z])/(Q-|z|?))etlzlA=12D,
(iti) [fz(2) < (1z|(1+1z])/(1—|z[)?)el2l/A=12D,
Equality holds for the inequalities if f(z) is one of the functions of the formnf.(nz),
[n| =1, where
_2(1-2) wuz/a-2)
fo(z2) = 12 e . (2.14)
REMARK 2.7. The function f.(z), |[n| = 1, as it is given in (2.14), plays the role of
the Koebe mapping in the set of logharmonic mappings (see [2, 5]).

In the next result we determine the radius of starlikeness for the mappings in the
set Typ.

THEOREM 2.8. Let f(z) = z|z|?Ph(z2)g(z) € Tin. Then f maps the disk {z : |z| <
Ro}, where Rg = (1 ++/5—+2+2+/5)/2 onto a starlike domain. The upper bound is the
best possible for all a € B.

PROOF. Let f(z) = z|z|*#h(z)g(z) € Ty, with respect to a given a € B. Then by
Theorem 2.3, there exists a function R = HG € P;;, and a function

F(z) =

z 28 Zas)((1+s)(1-s2))+(a(s)-1)B
1—22|Z| epo‘RL (s(1-a(s)))

dseTp,, (2.15)
both functions are logharmonic with respect to the given a, such that
f(z) =F(z)R(z). (2.16)

From [1, Theorem 2.1], it follows that R admits the representation

R(z) = v(2>eXP2RL %ZJ((SS)) :

(2.17)

where a € B and p is an analytic function with positive real part normalized by p (0) =1.



6 ZAYID ABDULHADI

A simple calculation leads to

oarg f(z) _ 2fz(2) ~2f=(2)
00 f(2)
g 2F:(2) —ZFz(2) ZR;(z) —ZRz(2)
=R F(2) +R R(2) (2.18)
2 ’
_ ‘R1+Z zp'(z)

1-22 * p(z)”’

where z=ve?, Since R((1+22)/(1-2%)) = (1-v2)/(1+¥2)and R(zp'/p) = —2v /(1 -

¥2), we obtain

zfz—2f3>1—rz_ 2r
o T 1 1-r2

R (2.19)

This gives
zf.—Zf> - 1-2r—-2r2-2¥3+74
f - (1+72)(1-72)

Thus R((zf, —Zf=)/f) > 0if 1 —2r —2r2 — 273 +v* > 0. Therefore, the radius of
starlikeness p is the smallest positive root (less than 1) of 1 —2¥ —2¥2-2¥3 +74 =0
which is Ry = (1 ++/5—+2+2+/5)/2. We conclude that f is univalent in {z: |z| <
Ry} and maps the circle {z: |z| < Rp} onto a starlike domain. The analytic function
f(z) =z(1-2)/((1+2z)(1+2z%)) belongs to the set T and hence to the set T;;, and
we have f’(Ry) = 0. Hence, the upper bound Ry is best possible for T;j. Since f(z) =
z|z|?Phg € Ty, if and only if ¢ = zh/g € T (Theorem 2.1), the same bound is the best
possible for all a € B. a

R

(2.20)

3. Univalent mappings in T;;. Now we show that both directions of Question 1.1
do not hold in general.

Our first example shows the existence of a normalized univalent logharmonic map-
ping F(z) = zH(z)G(z) which belongs to T;;, and such that F(U) is not symmetric
with respect to the real axis.

EXAMPLE 3.1. We define

B} — 2

Then
(a) F is a normalized logharmonic mapping. The normalization F(0) = 0, H(0) =
G(0) =1 is obvious. It remains to show that F is orientation-preserving, that
is, |a| = |FFz/F,F| <1 in U. Indeed, we have |a(z)| = |iz/(8+2iz)| <1/6in U.
Observe also that the necessary condition a(0) real holds since 8 = 0;
(b) F is univalent on U. We have for z1, z» in U, z1 # 2z,

(ziy1-2232)  (z1]21]° — 2222 %) J 15[z -2,

4(z1—2z2) 64(z1 —22) 32 ’

(3.2)

(c) F is typically real. This follows directly from the fact that F(U) is a pointwise
stretching of U. We have argF(z) = arg z;

|F(z1)=F(z2)| = |z1-22| |1~
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(d) F(U) is not symmetric with respect to the real axis. A simple calculation leads to

I(t) = 9F (') = sin(t)(lf Snz(t) + é),

(3.3)
Ly _sin() 1
I(t)fcos(t)(l > +64>'

It follows from the equation I’ (t) = O that t = +71/2. We deduce for the two extrema
M = max|;| < I(t) and m = minj; < I(t) that M = 49/64 and m = —81/64. Hence,
F(U) is not symmetric with respect to the real axis. In particular, we do not have
F(Z) =F(2).

Our next example shows that there are univalent logharmonic mappings from U
onto a symmetric domain Q which do not belong to Tyj.

EXAMPLE 3.2. Consider the function

1+iz
1-iz’

F(z)=z (3.4)

It follows from [4] that F is a univalent logharmonic mapping from U onto U. Hence,
F(U) is symmetric with respect to the real axis. But F is not typically real, since the
image of the interval (—1,1) is the line segment which starts from —i, passes through
the origin and ends at the point i. Using an appropriate approximation we can easily
get univalent logharmonic mappings with the same property. For instance, we may
consider a sequence of continuous functions f; (eit) = etn) 3 e N, from the unit
circle 0U onto oU such that
(i) @y (t) is a nondecreasing function of t on [0,277);

(i) @n(211) = Pn(0) + 2115

(i) [07 S (eit)dt =0 and [T e £ (eit) dt > O

(iv) limy -« £ (ett) = f*(e't) on oU.
Let f) be the univalent logharmonic functions with respect to the second dilatation
function a,, = (—i(n—1)/n)z, that is, f, is a solution of (1.1) with respect to a,.
Moreover, we suppose each f, is a solution of the Dirichlet problem for the boundary
function f;*. Then f,(0) =0, (f»)-(0) > 0. Since {f,} converges locally uniformly to
F, the mappings f, are not typically real for n large enough.

However, if the second dilatation function a has real coefficients, then we have the
following theorem.

THEOREM 3.3. Let f = z|z|*!h(2)g(z) be a univalent (orientation-preserving)
logharmonic mapping defined on the unit disk U and normalized by f(0) =0, h(0) =
g(0) = 1. Suppose that the second dilatation function a has real coefficients, that is,
a(z) = a(Z). (Observe that the condition a(0) real or equivalently B real is automati-
cally satisfied.)

(@) If f is typically real, then f (U) is symmetric with respect to the real axis.

() Iflal <k <1 onU and f(U) is a strictly starlike Jordan domain symmetric with
respect to the real axis, then f is typically real.

PROOF. (a)Let f(z) =z|z|?Ph(z)g(z) be a univalent mapping in T;,. Then ¢(z) =
zh(z)/g(z) € T and has hence real coefficients. Since a has real coefficients, it follows
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thatg'/g=a/(1-a)(¢'/¢P)and h'/h =1/(1—-a)(¢’/¢) have real coefficients which
implies that h(z) = h(Z), g(z) = g(Z) and hence f(z) = f(Z). Therefore, f(U) is
symmetric with respect to the real axis.

(b) Suppose Q = f(U) is a strictly starlike symmetric domain (i.e., every ray emitted
from the origin hits 0 f(U) at one point only) and let a € H(U) be a given dilatation
function with real coefficients satisfying |a(z)| < k < 1 on U. Then by [5], there is
only one univalent logharmonic mapping from U onto Q which is a solution of (1.1)
normalized by f(0) = 0 and h(0) > 0 and g(0) = 1. Since a(z) has real coefficients,
it follows that a(z) = a(z). Moreover, f(z) = f(Z) is a univalent and logharmonic
mapping defined on U satisfying f1(0) =0, h1(0) =1 > 0and g;(0) =1 and f; is a
solution of the equation

fiz= a(Z)%flz (3.5)

Therefore, fi = f, thatis, f(z) = f(Z). Since f is univalent, it follows that f € Tyj.

It is a natural question to ask if the condition that a has real coefficient is necessary
for Theorem 3.3 to hold. The answer to this question is negative as the following
example shows. Instead of the class Ty, for which ¢(z) = z/(1 — z2), we consider
the set T, of univalent logharmonic (orientation-preserving) typically real mappings
f(z) = zh(z)g(z) whose second dilatation function a € H(U), lal <k <1, a(0) =0
and whose corresponding analytic typically real functionis ¢(z) = z/(1+z?). Relation
(2.9) then becomes

Z a(s)(1-s?)

(2) = 0 s(I—a(s))(1+s2)

exp2R (3.6)

z
1+2z2
and it follows that

z?)
5 exp2 JLU - TIZ 1+22)d un)dz. (3.7)

Each one of these mappings has the property that f € Ty, with f(U) = C\ E, where E
consists of two slits on the real axis containing infinity. Hence, f(U) is a symmetric
domain with respect to the real axis. We show that f is univalent. Put € = rei = ¢p(z) =
z/(1+z2) and F(C) = R(C)e'?®. Then F is a logharmonic mapping on D = ¢(U)
whose second dilatation function is A(C) = a(¢(z)). Each radial half-line in D is
mapped into itself, that is, we have 0(reil) = t. Moreover,

f(z)=

r(0R/or) 1+A
R T 1-A

>0 (3.8)

holds on D, which implies that F is univalent on D; and hence f is a univalent function
on U. All these properties hold independently of the coefficients of a, whether they
are real or not. However, we cannot conclude that the relation f(z) = f(Z) holds for
a with real coefficients. O
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