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POWERS OF COMMUTATORS AS PRODUCTS OF SQUARES
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Let F be a free group and x,y be two distinct elements of a free generating set, then
[x,y]n is not a product of two squares in F , and it is the product of three squares. We
give a short combinatorial proof.
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1. Introduction. It has been shown by Lyndon and Newman [2] that in the free

group F = F(x,y), freely generated by x,y , the commutator [x,y] is never the prod-

uct of two squares in F , although it is always the product of three squares. Let γ ∈ F ′,
the minimal number of squares which is required to write γ as a product of squares

in F is called the square length of γ and denoted by Sq(γ). Here we consider more

general case, that is, Sq[x,y]n, n∈N.

Throughout this paper, xy means yxy−1; [x,y]= xyx−1y−1; G′ denotes the de-

rived subgroup of G, and γm(G) denotes the mth term of the lower central series

of G.

2. Main result. The main result of this note is the following theorem.

Theorem 2.1. Let F be a free group and let x, y be two distinct elements of a free

generating set, then Sq[x,y]n = 3 if n∈N is odd, and Sq[x,y]n = 1 if n is even.

Proof. In the case when n is even, the result is clear. Let n be an odd integer. First,

we show that [x,y]n can be written as a product of 3 squares in F . Put [x,y] = W ,

then we can check the following identity:

W 2k+1 = [x,y]2k+1 =
((
Wkxy

)Wk)2(
Wky−1)2

((
W−kx−1)y)2

. (2.1)

In the case k= 0, we get

[x,y]= (xy)2(y−1)2
((
x−1)y)2

, (2.2)

hence

Sq[x,y]n ≤ 3, (2.3)

hence to complete the proof it is enough to show that

Sq[x,y]n ≠ 2. (2.4)
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The case n= 1 was proved by Lyndon and Newman [2], so we prove thatW 2k+1 ≠ a2b2

for any k∈N and a,b ∈ F . Lyndon and Schützenberger [3] proved that

aM = bNcP , M,N,P ≥ 2, (2.5)

implies that a, b, and w all lie in a cyclic subgroup. Therefore, all components a, b,

and w of a solution of the equation Wr = a2b2, for r ≥ 2, must belong to the cyclic

subgroup generated by W . Hence, we reduce the problem to the case of rank two, we

may assume F = F(x,y) to be the free group of rank two freely generated by x, y ,

and suppose a2b2 =Wr for some r ∈ Z, then

a2b2 ≡ (ab)2 modF ′. (2.6)

Since a2b2 ∈ F ′, (ab)2 ∈ F ′, hence ab ∈ F ′ and a = ub−1 for some u ∈ F ′. Now a2 =
(ub−1)2 =uub−1b−2, hence uub−1 =Wr and Wr ≡u2(modγ3(F)).

But γ2(F)/γ3(F)� C∞ and it is generated byW = [x,y]. SinceW is the generator of

γ2(F)modγ3(F), u2 ≡Wr has solution if and only if r is even, hence we proved that

W 2k+1 ≠ a2b2 for any k∈N.

We have the following notations.

(1) In a similar way anbn =Wr for some r ∈ Z implies that

an = (ub−1)n =uub−1
ub

−2 ···ub−(n−1)
b−n,

anbn =uub−1
ub

−2 ···ub−(n−1)
,

(2.7)

for some u∈ F ′. And we have

un ≡Wr modγ3(F), (2.8)

so, n|r , hence, if n is not a multiple of r , then anbn ≠Wr .

(2) In F(x,y), Sq[x,y]n = 3 for any odd number n ∈ N. But there exists commu-

tators with square length equals to two. Obviously, [h2,g] and [h,g2] are products

of two squares, and a nontrivial commutator is never a square [4]. Thus Sq[h2,g] =
Sq[h,g2]= 2.

But it is not the only case in which the square length of a commutator is two, as

shown by Comerford and Edmundss in [1].
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