

POWERS OF COMMUTATORS AS PRODUCTS OF SQUARES

M. AKHAVAN-MALAYERI

Received 2 May 2001 and in revised form 13 January 2002

Let F be a free group and x, y be two distinct elements of a free generating set, then $[x, y]^n$ is not a product of two squares in F , and it is the product of three squares. We give a short combinatorial proof.

2000 Mathematics Subject Classification: 20F12, 20F99.

1. Introduction. It has been shown by Lyndon and Newman [2] that in the free group $F = F(x, y)$, freely generated by x, y , the commutator $[x, y]$ is never the product of two squares in F , although it is always the product of three squares. Let $y \in F'$, the *minimal number of squares which is required to write y as a product of squares in F* is called the square length of y and denoted by $\text{Sq}(y)$. Here we consider more general case, that is, $\text{Sq}[x, y]^n$, $n \in \mathbb{N}$.

Throughout this paper, x^y means yxy^{-1} ; $[x, y] = xyx^{-1}y^{-1}$; G' denotes the derived subgroup of G , and $\gamma_m(G)$ denotes the m th term of the lower central series of G .

2. Main result. The main result of this note is the following theorem.

THEOREM 2.1. *Let F be a free group and let x, y be two distinct elements of a free generating set, then $\text{Sq}[x, y]^n = 3$ if $n \in \mathbb{N}$ is odd, and $\text{Sq}[x, y]^n = 1$ if n is even.*

PROOF. In the case when n is even, the result is clear. Let n be an odd integer. First, we show that $[x, y]^n$ can be written as a product of 3 squares in F . Put $[x, y] = W$, then we can check the following identity:

$$W^{2k+1} = [x, y]^{2k+1} = \left((W^k x y)^{W^k} \right)^2 (W^k y^{-1})^2 \left((W^{-k} x^{-1})^y \right)^2. \quad (2.1)$$

In the case $k = 0$, we get

$$[x, y] = (x y)^2 (y^{-1})^2 \left((x^{-1})^y \right)^2, \quad (2.2)$$

hence

$$\text{Sq}[x, y]^n \leq 3, \quad (2.3)$$

hence to complete the proof it is enough to show that

$$\text{Sq}[x, y]^n \neq 2. \quad (2.4)$$

The case $n = 1$ was proved by Lyndon and Newman [2], so we prove that $W^{2k+1} \neq a^2b^2$ for any $k \in \mathbb{N}$ and $a, b \in F$. Lyndon and Schützenberger [3] proved that

$$a^M = b^N c^P, \quad M, N, P \geq 2, \quad (2.5)$$

implies that a , b , and c all lie in a cyclic subgroup. Therefore, all components a , b , and c of a solution of the equation $W^r = a^2b^2$, for $r \geq 2$, must belong to the cyclic subgroup generated by W . Hence, we reduce the problem to the case of rank two, we may assume $F = F(x, y)$ to be the free group of rank two freely generated by x , y , and suppose $a^2b^2 = W^r$ for some $r \in \mathbb{Z}$, then

$$a^2b^2 \equiv (ab)^2 \pmod{F'}. \quad (2.6)$$

Since $a^2b^2 \in F'$, $(ab)^2 \in F'$, hence $ab \in F'$ and $a = ub^{-1}$ for some $u \in F'$. Now $a^2 = (ub^{-1})^2 = uu^{b^{-1}}b^{-2}$, hence $uu^{b^{-1}} = W^r$ and $W^r \equiv u^2 \pmod{\gamma_3(F)}$.

But $\gamma_2(F)/\gamma_3(F) \cong C_\infty$ and it is generated by $W = [x, y]$. Since W is the generator of $\gamma_2(F) \pmod{\gamma_3(F)}$, $u^2 \equiv W^r$ has solution if and only if r is even, hence we proved that $W^{2k+1} \neq a^2b^2$ for any $k \in \mathbb{N}$. \square

We have the following notations.

(1) In a similar way $a^n b^n = W^r$ for some $r \in \mathbb{Z}$ implies that

$$\begin{aligned} a^n &= (ub^{-1})^n = uu^{b^{-1}}u^{b^{-2}} \cdots u^{b^{-(n-1)}}b^{-n}, \\ a^n b^n &= uu^{b^{-1}}u^{b^{-2}} \cdots u^{b^{-(n-1)}}, \end{aligned} \quad (2.7)$$

for some $u \in F'$. And we have

$$u^n \equiv W^r \pmod{\gamma_3(F)}, \quad (2.8)$$

so, $n|r$, hence, if n is not a multiple of r , then $a^n b^n \neq W^r$.

(2) In $F(x, y)$, $\text{Sq}[x, y]^n = 3$ for any odd number $n \in \mathbb{N}$. But there exists commutators with square length equals to two. Obviously, $[h^2, g]$ and $[h, g^2]$ are products of two squares, and a nontrivial commutator is never a square [4]. Thus $\text{Sq}[h^2, g] = \text{Sq}[h, g^2] = 2$.

But it is not the only case in which the square length of a commutator is two, as shown by Comerford and Edmundss in [1].

ACKNOWLEDGMENTS. This research was in part supported by a grant from the Institute for Studies in Theoretical Physics and Mathematics (IPM). The author is indebted to Professor A. Rhemtulla of the University of Alberta for various helpful communications concerning the matters discussed in this note, and the author would like to thank the referees who have patiently read and verified this note, and also suggested valuable comments. The author also likes to acknowledge the support of the IPM.

REFERENCES

- [1] L. P. Comerford Jr. and C. C. Edmunds, *Products of commutators and products of squares in a free group*, Internat. J. Algebra Comput. **4** (1994), no. 3, 469–480.
- [2] R. C. Lyndon and M. Newman, *Commutators as products of squares*, Proc. Amer. Math. Soc. **39** (1973), 267–272.
- [3] R. C. Lyndon and M. P. Schützenberger, *The equation $a^M = b^N c^P$ in a free group*, Michigan Math. J. **9** (1962), 289–298.
- [4] M. P. Schützenberger, *Sur l'équation $a^{2+n} = b^{2+m} c^{2+p}$ dans un groupe libre*, C. R. Acad. Sci. Paris **248** (1959), 2435–2436 (French).

M. AKHAVAN-MALAYERI: AZZAHRA UNIVERSITY, VANAK, TEHRAN 19834, IRAN

E-mail address: mmalayer@azzahra.ac.ir

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru