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Suppose that X is an arbitrary real Banach space and T : X — X is a Lipschitz strongly pseu-
docontractive operator. It is proved that under certain conditions the Ishikawa iterative
method with errors converges strongly to the fixed point of T and this iteration procedure
is stable with respect to T.
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1. Introduction and preliminaries. Let X be a real Banach space and J denote the
normalized duality mapping from X into 2% * given by

Jx={feX*:(x,f)=lxII* = IfI°}, (1.1)
where X* denotes the dual space of X and (-, -) denotes the generalized duality pair-
ing. In the following, I denotes the identity operator on X. An operator T with domain

D(T) and range R(T) in X is called strongly pseudocontractive if there exists a con-
stant t > 1 such that for given x,y € D(T), there exists j(x—y) € J(x —y) satisfying

. 1
<Tx—Ty,J(x—y)>s;I\X—yllz. (1.2)
If t =1 in (1.2), then T is called pseudocontractive. Interest in pseudoncontractive
mappings stems mainly from their firm connection with the important class of accre-
tive operators, where an operator T is called accretive if for each x,y € D(T), there
exists j(x —y) € J(x —y) such that

(Tx-Ty,j(x—-2y)) =0. (1.3)

Furthermore, T is called strongly accretive if there exists a constant k € (0,1) such
that for given x,y € D(T), there exists j(x —y) € J(x — ) satisfying

(Tx-Ty,j(x-y)) = kllx-yl? (1.4)

It follows easily from (1.2), (1.3), and (1.4) that T is strongly pseudocontractive (resp.,
pseudocontractive) if and only if (I —T) is strongly accretive (resp., accretive), so that
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the mapping theory for strongly accretive operators (resp., accretive operators) is inti-
mately connected with the fixed point theory of strongly pseudocontractive operators
(resp., pseudocontractive operators). It is well known [4] that if T : X — X is a Lipschitz
strongly pseudocontractive operator, then T has a unique fixed point.

Next we recall the definition of stability. Let X be a Banach space and T be a mapping
from X into X. Let xo € X and x,,+1 = f(T,x,) define an iteration procedure which
yields a sequence of points {x,},_, in X. Suppose that F(T) = {x e X : Tx =x} = &
and that {x,},_, converges to a fixed point p of T. Let {y,},_, be an arbitrary se-
quence in X and €, = || Vn+1 —f (T, yn) . If limy, .« €, = 0 implies lim,,—» y,, = p, then
the iteration procedure defined by x,.1 = f(T,x,) is said to be T-stable or stable
with respect to T. Stability results for several iteration procedures for certain con-
tractive definitions have been established in recent papers by several authors, (see
[6,10, 11, 12] and the references therein). In [6], Harder and Hicks showed how such a
sequence {yy},_o could arise in practice and demonstrated the importance of inves-
tigating the stability of various iteration procedures for various classes of nonlinear
mappings.

It is our purpose in this paper to show that if X is an arbitrary real Banach space
and T : X — X is a Lipschitz strongly pseudocontractive operator, then under certain
conditions the Ishikawa iterative method with errors converges strongly to the unique
fixed point of T. We also prove that this iteration procedure is stable with respectto T.
Our results generalize most of the results that have appeared recently. In particular,
the results of [1, 2, 3, 5, 6, 8, 10, 11, 12, 13] and a host of others will be special cases
of our theorems.

The following lemma plays a crucial role in the proofs of our main results.

LEMMA 1.1 [9]. Let {an}n_g, (bnln-o, and {cn};_o be three nonnegative real se-
quences satisfying the inequality

an1 < (1—wy)ay +bywy, +cy (1.5)

for alln > 0, where {wy}r_, C [0,1], X7 oWy = o, limy,_w by, =0, and >.5,_ycn < oo.
Then lim,, .., a, = 0.

2. Main results. In the sequel, k = (t — 1)/t and t is the constant appearing in (1.2)
and L denotes the Lipschitz constant of T with L > 1.

THEOREM 2.1. Let X be an arbitrary real Banach space and let T : X — X be a
Lipschitz strongly pseudocontractive mapping. Define the sequence {xy};,_, iteratively
by x0,u0,v0 € X,

Yn=1-Bn)xn+BnTxy+vy, n=0, o
Xni1= (1= n)Xn+ 0, Tyn+uy, mn=0, ’

where {Xn}n_g, {Bnln_o are two real sequences and {Un}y_g, {Un}n-o are two se-
quences in X satisfying the following conditions:
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Sop=+0, 0<oan<1,n=0; (2.2)
n=0
k—L(L+1)By—L>(L+1)oty _
1—(1-Ka, >r, 0<Bn=<1,n=0; (2.3)
lim|jvall =0, 3 [Junll < +oo; (2.4)
n=0

where v € (0,1] is a constant. Then {xy},_, converges strongly to the unique fixed
point of T.

PROOF. It follows from [4, Corollary 1] that T has a unique fixed point p in X. Since
T is strongly pseudocontractive, it follows from (1.2) that for all x,y € X, there exists
j(x—vy) e J(x—y) such that

(I-T)x-(I-T)y,jx-)) = klx-yI° (2.5)
Thus
(U-T-kI)x—(I—-T—kI)y,j(x-v)) =0, (2.6)
and by [7, Lemma 1.1], we have
Ix-yll<||x-y+s[U-T-k)x—IT-T-kI)y]|| (2.7)
for all x,y € X and s > 0. Using (2.1), we obtain that

(I—atn)Xn = Xns1 — Cn TYn —Un
=[1-(1=k)otn]xni1+ 0t (I =T =kI)Xpn i1 (2.8)

+ o Txpe1 — 0 Tyn—uy.
Note that,
(1-cn)p=[1-A-k)oty]p+ 0 (I-T—kI)p. (2.9)
It follows from (2.7), (2.8), and (2.9) that

(1= otu)|]xn — pl|

Xn
1-(1-k)oyn
— | TX 1 = Tyn|| = |[unl]

= [1- 1=k on]llxn =Pl = &nl|Txne1 = Tyul| = ||un

>[1-(1-k)on]

Xn+1— P+ [(I*T*kl)xnﬁ-l*(I*T*kl)p]H

(2.10)
which implies that
1-on on
b =Pl = = e =Pl T e T = Tl
1 (2.11)

+ 1—(1—k)0(n||un||
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We have the following estimates:

|10 = Vull < Bullxn = Txn|| +[|vnll < (L+1)Bullxn —pl| +[|vnll,
[ Tyn—wnll < L+ Dl|yn—pll < L+1)(1=Bn+LBn)|[xn—pl|+L+Dllva]] (2.12)

< L(L+1)||xn—p||+ L+ 1)||[val.
From (2.1) and (2.12), we have

HTXn+1 —TynH SLHXHH _J’nH
< L(1 = &n)||xn = Yull + &uL||Tyn — yul| + Ll[un]| (2.13)
<[LIL+1)Bu+L*(L+1)cn]||xn —p|| + LI+ D) ||Jvnl| +L||1n]|.

Using (2.13) in (2.11), we get

lIxXne1 = pll
= {1—%1_—0(1:)% " 1_(10(_”,00(” [L(L+1)ﬁn+L2(L+1)O<n]}
><|\an10||+1_(1(X+kmL(L+l)l|vn||+1_(ll“m||un|| (2.14)
< 1o KL DA LD 1 i oo+ Dl
where D = (L% +L)/k. It follows from (2.3) and (2.14) that
s — 1l = (1 7)1 pI| + Dotal [l + Dl @15

Put a, = llxn —pll, Wy =¥, by = (D/7)||lvyll, and ¢, = D||u, || for any n > 0. Then
Lemma 1.1 ensures that [[x,, —p|| — 0 as n — co. This completes the proof. O

THEOREM 2.2. Let X, T, {Xu}n_o, {Cnln-0, {Bntno, and {vy},_o be as in Theorem
2.1. Suppose that there exists a sequence {y,},_o withlimy, ... yn = 0 and |[u, |l = yn oty
for any n = 0. Then {x,};,_, converges strongly to the unique fixed point of T.

PROOF. Just as in the proof of Theorem 2.1, we have

lIxn+1 = pll < (1 =7a)||xn = pl[+ Dotul[vn]| + D|[un||
(2.16)
= (L=7otn)||xn = pll+ Don ([[vall + yn).

Put a, = ||xn —pll, Wy = vy, by = (D/7)(||vnll +yn), and ¢, = 0 for any n > 0. Then
Lemma 1.1 ensures that ||x;, —p|| — 0 as n — c. This completes the proof. O

REMARK 2.3. Examples 2.4 and 2.5 show that Theorems 2.1 and 2.2 extend properly
[3, Theorem 1], [1, Theorem 4.2], and [5, Theorem 1].
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EXAMPLE 2.4. Let X, T be as in Theorem 2.1 and

r—E o - k 8, = k
T2 T AI2(L+1)(n+1)’ TTAL(L+1)’
) . (2.17)
lunll = Gz Mol =5y

for all n = 0. Then the conditions of Theorem 2.1 are satisfied. But [3, Theorem 1], [1,
Theorem 4.2], and [5, Theorem 1] are not applicable.

EXAMPLE 2.5. Let X, T, ¥, {Un}n_g, and {Bn},_o be as in Theorem 2.1. Put

k 1

“warn T = (2.18)

Kn
for all n = 0. Then the assumptions of Theorem 2.2 are fulfilled. However we do not
invoke [3, Theorem 1], [1, Theorem 4.2], and [5, Theorem 1] to show the sequence
{xn}n_o converges strongly to the unique fixed point of T, because {B,},_o does not
converge to 0.

Now we prove the Ishikawa iterative procedure with errors is stable with respect to
Lipschitz strong pseudocontraction.

THEOREM 2.6. Let X, T, {un}y_o, and {vy},_o be as in Theorem 2.1. Define the
sequence {xn}n,_o iteratively by xo,uo,vo € X,

Zn=(1=Bn)xn+PBnTxXn+Vn, n=0,

(2.19)
Xni1 = (1= o)Xy + 0, T2z +Uy, n=0,
where {0tn}y_o and {Bn}n_o are two real sequences satisfying (2.4) and
O<a<op,<1, 0<B,<1, n=0; (2.20)
lim ||v,|| = lim ||u,|| = 0, (2.21)
n—oo n—oo

where a is a constant. Let {y,},_, be an arbitrary sequence in X. Define {€,};_, C
[0, +c) by

wy=1-Bn)Yn+BunTyn+v,, n=0,

(2.22)
€n=|lyns1 — (1= n) v — 0y Twy —uy||, n=0.
Then,
(1) the sequence {xy};,_o converges strongly to the fixed point p of T;
@) llyna —pl = A =—ar)llyn — pll + €n + Dllvnll + Dllunll, n = 0, where D =
(L +L)/k;
3) limy oo Y = p < limy, .o €, = 0.

PROOF. It follows from Theorem 2.1 that x,, — p as n — o. This completes the
proof of (1).
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Using (2.22), we have

l[vne1—pll < €n+[(1 = &) Y+ &n Twy +un—pl|. (2.23)

Set Py, = (1 — &) Y + 6 Twy, + Uy, then (1 — &y) vy = Py — 6 Twy, —uUy. As the proof
in Theorem 2.1 and by (2.20), we obtain that

[1Pn=pll < (1= 0n?) |30 = [+ Detu|[vn][ + D [unl|
(2.24)
= (1=an)|lyn = pll+Dl[vall+Dllun|.

Hence || Vp41 —pll < (1—or) |y —pll + €4+ Dllvy||+Dlluy, ||. This completes the proof
of (2).
Now suppose that lim, .. v, = p. Then

€n = |[yni1 = (1= ) Yn — cn Twy — uyl|
<|yna =PI+ [(1 = &) Y + n Twy +un —p|| (2.25)
<|lyna1=pll+ A =an)||yn—pll+D([|vnll +[|unl]).

It is easy to verify that €, — 0 as n — oo.
Next suppose that lim,;,_.« €, = 0. From (2.23) and (2.24), we obtain that

|1 =pll < (1= anr)||yn = pll+ Datul[vn|| + Dl[un|| + €n

(2.26)
= (1_O‘T)Hyn—pH+D||Un||+D||un||+€n’

which means that y,, — p as n — o according to Lemma 1.1 and (2.21). This completes
the proof of Theorem 2.6. |

REMARK 2.7. Example 2.8 below shows that Theorem 2.6 extends substantially [11,
Theorem 1] and [12, Theorem 3].

EXAMPLE 2.8. Let X, T be as in Theorem 2.6 and

Lk ko kit
2 16L2(L+1) 8L2(L+1)(n+2) 2.27)
Bo= iD= (ol =
TT4L2(L+1)(n+2)’ " T+l

for n = 0. Then the conditions in Theorem 2.6 are fulfilled. But [11, Theorem 1] and
[12, Theorem 3] are not applicable since &, < B, for all n > 0.
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