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ABSTRACT. The approximation of a function f € C[a,b] by Bernstein polynomials
is well-known. It is based on the binomial distribution. O. Szasz has shown that
there are analogous approximations on the interval [0,») based on the Poisson
distribution. Recently R. Mohapatra has generalized Szasz' result to the case in

which the approximating function is
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The present note shows that these results are special cases of a Tauberian theorem
for certain infinite series having positive coefficients.
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1. INTRODUCTION.

Let us denote the class of functions f such that £ € CL0,») and for which
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lim £(t) exists by CL »* The subclass for which lim f(t) = 0 we shall denote

too ’ o
by Cw.
It is known that if f € CL » then
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for each x € (0,%). Here & > 0, B is a real number and N is a positive integer
exceeding -B/¢. This result was proved in [1] and is a generalization of a
result due to 0. Szasz [2] which was the special case ¢ = f8 =1, N = 0.

The proof of (1) depends heavily on a result due to D. Borwein [3], namely

that
o w ke-l

lim e ® f 22— =1 (2)
weo k=N T (ka+B)

and it is the purpose of the present note to show that the deduction of (1) from
(2) is a special case of a general theorem about infinite series. This theorem
is of the Tauberian type and the method of proof which we give is of rather wide
applicability. Our result is

THEOREM. Suppose that f ¢ CL w* Let a 20, let K be a constant and let
’

k
!

{vk} be a strictly increasing sequence of positive numbers. Then
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implies 1lim e z ak(xu) f( m ) = £(x)
ue k=0

for each x ¢ (0,®).

2. PROOF OF THE THEOREM

Since the result is trivially true if £ is a constant

function there is no loss of generality in supposing f e C
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instead of f ¢ CL »* As usual we will denote by ||£]| the norm of f in the
’

space C_, namely |1£]] = sup |£(x)]. Now for each x e (0,®)
(o]
’
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defines a linear functional on C, which we will denote by E;. And if 1lim is

replaced by lim the corresponding linear functional will be denoted by.&x.

First we consider E;. Since

—u 2 vk vk+K —~xu Z Vi
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we see, on letting u»», that |§;(f)| < ||£]|. Hence I; is a bounded linear

functional on C°° and so we will have
Rx(f) = [; £(t) dax(t)

for some function ax € BV[0,»), and we shall take ax as having been normalized

in the usual way. Now if we take f(t) = e_lt (A > 0) it is a simple matter to

t -Ax

see that I;(e-x ) = e "". In this calculation the hypothesis (3) is used

in the form

© v
lim e *¥ ak(xu)
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k_ (x > 0).

Hence

T (et = r ey (1) = e (A > 0).
0 X

By a well known theorem [4] this determines the normalized function o uniquely

and by inspection it is seen to be
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0 (0 =t <x)
1

Gx(t) 12 (t = x)
1 (x < t)

Hence for f ¢ C°° we have
Qx(f) = J: f(t) dax(t) = f(x) .

Now all of the above analysis involving E; could be repeated with &x instead.

The same function ax would be obtained and so we have
2.(5) =2 (£) = £(0)

That is to say, if x > 0

v v, +K
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) exists

and equals f(x). This concludes the proof of the theorem.

We conclude with two remarks. The above theorem is about point-wise
convergence whereas in [1] and [2] the uniform convergence of a set of
functions Pu(x) to f(x) at each point x, € [0,2) was considered. For the
definition of this type of convergence we refer the reader to either of these
sources but, when f ¢ CL,w’ to go from pointwise convergence to this other
type of convergence is, any way, a simple matter. Secondly, we mention that
in [1] the result (1) was stated for x e [0,%) but except in the case

No+B = 1 the point x = 0 should be omitted.
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