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ABSTRACT. Using the technique of canonical expansion in probability theory,
a bilinear summation formula is derived for the special case of the Meixner-

Pollaczek polynomials {Agk)(x)} which are defined by the generating function

b ng)(x)zn/n! = (1 + z)i(x—k)/(l - Z)i(x+k)’ lz| < 1.
n=0

These polynomials satisfy the orthogonality condition

s

J: 2 N (102 (i0ax = (- a0 8, L, i = AT

with respect to the weight function

pl(x) = sech mx

J“ cee Jw sech ™, sech wxz e
—C0 -0

sech m(x - X7 oeee m xk_])dx'dx2 . e dxk_], k=2, 3 ...

pk(X)
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1. INTRODUCTION

Let U be a Cauchy random variable with the probability density function

(p.d.f.)

1 1
f(u p

7 X <u<®,
1 +u

Consider the transformation U = ginh #V. The p.d.f. of V is
p(v) = sech v, == < v < =, (1)

This is the hyperbolic secant distribution considered by Baten [2], and is a
special case of the generalizéd hyperbolic secant distribution treated by
Harkness and Harkness [10].
Let Xl and X2 be two random variables having additive random elements
in common [6], i.e.
Xl = V] + V2

X2 = V2 + V3

where Vi (i =1, 2, 3) are mutually independent random variables each
having the p.d.f. given in (1). The joint p.d.f. p(xl, xz) of Xl and X2 is

easily shown to be

p(xl, xz) = Iﬂ sech mz sech w(xl - z) sech n(x2 - x; + z)dz

™, = 1r(x2 - xl)
=§sech—2-sech-2—sechf, - < x <= (2)

- < X, < ™,

The marginal p.d.f.'s for Xl and X2 are respectively
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g(x)) = Jj“ p(x,, xz)dx2 = 2x cosech mx,
(3

h(x2) = Ji“ p(xl, x2)dxl = 2x2 cosech T™Xy.

The orthogonal polynomials with the above marginals as weight function are
related to the Euler numbers and have been discussed by Carlitz in [4].

Specifically, for the weight function

Ijm e ij sech ™™, sech Xy ... sech 7(x - X =X,

cee — xk_])dxldxz see dxk_l, k = 2’ 3’ e . (4)

pk(X)

p](x) sech mx,

the polynomials {Aﬁk)(x)} with generating function

o«
z A(k)(x)zn/n! = (1 + z)i(x-k)/(l - z)i(x+k), lz| <1 (5)
n=0 o
are the orthogonal polynomials in the interval (-, ©) and satisfy the

orthogonality condition

J:, 2, ) (@A {? (i ax = (=DMl 8, (6

where i = /=1 and Gm a denotes the Kronecker delta.
td
The explicit form of the orthogonal polynomial is given by Carlitz [4] as

n §(x - k)ym +k -1
SR R B

r=0 r n-r

DR LF [0, 4(x + k)3 ks 2]. )

The last result follows easily from the following well-known generating function

for the Gaussian hypergeometric function oF1 [7, p. 82]
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© -c
(1 + z)b-c[l + (1 - x)z]-b = I [ ] FI[-n, b; c; x]z"
n=0 'n 2

]zl <1, |z- le <1,

A related system of polynomials has been discussed by Bateman [1] who
referred to them as the Mittag-Leffler polynomials. It happens that both the
polynomials discussed by Bateman and Carlitz are but special cases of the system
of orthogonal polynomials first discussed by Meixner [11] and later
independently by Pollaczek [12]. Following the notation of [8, p. 219] (See

also [5, p. 184]), the Meixner-Pollaczek polynomials are given explicitly by

pt(l“) (x5 ¢) = (i;?—“ ind JFy L, o+ ix; 205 1 - o219 (8)

where a >0, 0< ¢ <7 and -» < X < »,

These polynomials are orthogonal with respect to the weight function

. 20-1
WPy gy = Zsin @ (20X )2

L

The orthogonality relation is given by

Jo w(a)(x; ¢)P§a)(x; ¢)P§é)(x; $)dx = ESE%;;—EL cosec ¢ Gm,n'
A generating function for Pﬁa)(x; ¢) 1is
z tnPga)(x; ) = (1 - tei¢)-u+ix - té-i¢)-a-ix ’ ltl < 1. 9)

n=0

It is clear when comparing (7) with (8) or (5) with (9) that

(-i)“xt(lk)(ix) = n! Piklz)(x/Z; 7/2), k=1,2, ..o n=0,1, 2, ...

and thus Aﬁk)(x) may be regarded as a special case of the Meixner-Pollaczek

polynomials.
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2. A BILINEAR SUMMATION FORMULA

From the generating function in (5) it is immediately clear that Aik)(x)
satisfies the following so—called Runge-type identity
(kl+k2) n [n) (kl) (kz)

A (xl + xz) = I Ar (xl))\n_r (xz), k], k2 =1, 2, 3, ... (10)

n
r=0 ‘r

and all n.
It has been shown that the result in (10) is both necessary and sufficient
for the joint p.d.f. in (2) to possess a bilinear expansion (also called a

canonical expansion in statistical literature) of the form [6]
©
p(x;5 X)) = g(xph(x,)) I p 6 (x)¢ (x))

r=0
where the canonical variables {On(x)} ({¢n(x)}) are a complete set of
orthonormal polynomials with weight function g(x) (h(x)). The canonical
correlation is

P, = El6 (X9 (X)]
where E denotes the expectation operation.
For the joint p.d.f. in (2) with the equal marginal p.d.f.'s given in (3),

we note that the canonical variable in this case is

.-n

b () = ¢ (0 = — 1P ().

v’n!(Z)n

The canonical correlation is

Al
[

= E[6,(X,)¢_(X,) ]

_y"n
- —1(1:2)2>n e 11v, + v P Ly, + v 1)

-n n n. ny rn
- (?') Tz U[ ] E[xf,')(ivl)] .

02D 520 r=0 ) e
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. ) (.
< ED LGV GEV) B (1Vy) ]

=D (D). 12
-ﬁf:[)\n (1V2)]

an

We therefore have the following interesting bilinear summation formula for

the Meixner-Pollaczek polynomials

© _\n X X m(x, - x)
T _¢n 3 3(2)(1,;]))‘[(12)(1:{2) = sinh Tl sinh _iz sech __2_5_1_ /(2x1x2)
n=0 [(n + 1)!]°

-oo<xl<o° and -w<x2<°°- (12)

3. A GENERALIZATION

Consider the following more general scheme of additive random variables as
in [9].
Let {Ei} for i=1, 2, ..., n - m, {"i} for i=1, 2, ..., m

and {Ci} for i =1, 2, ...y n, - m where 1 g m < min(n,, nz)

be (nl + n, - m) mutually independent random variables each having the p.d.f.

2

given in (1).

Define
n -m o n, m
U= 1I £E., V=% n., W= I [
i=1 i=1 * i=1
X‘=U+V
X2=V+W.

It is clear that the joint characteristic function ¢a(u)l, m2) of X] and

X2 1s
¢(w;s wz) = E[exp(lw]Xl + 1m2X2)]
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E{exp[lwlU +do W + (e + wz)V]}

n, -mgw n,-mw m(w, *w
sech ! I—-]-] sech 2 [-3) sech [—]——2]

2 2 2

iwg. iwn. iw
since E[e 1:’ E|:e J:l =E|:e &k]

' iwv
e sech v dv
-0

sech(‘-"z-) for 1 <i<n, - m,

The joint p.d.f. in question is therefore
1 -imlxl-:i.c.uzx2 n mew, n,"mew,
p(x,, x,) = —r r e sech [—) sech {—-—) .
1 2 41T2 S 2 2

m(w; * w,
sech I—i-—)dw]dwz (13)

and the marginal p.d.f.'s for X] and X2 are respectively

1 o (%
g(x]) =5 - e sech 5 dw]
nl-l n 2
1 2 1 .
B CHERDN M‘z‘ ¥ 1"1”
1 -iwzx2 n,(w,
h(xz) =5 n e sech [—Z—]dwz
0yl 2

n
1 2 2 .
“T G, DT HEEES

on using the fact that [3, p. 31]
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r e-ivx[sech(Bx +v) ]uﬂdx = =

The respective canonical variables are

.-n (n,)

i .
Gn(xl) L — )‘n (1xl)
n.(nI n
.-n (n,)
b (x) = ———1_ % (ix,).
n.(nz)n

(14)

By a repeated application of the Runge-type identity in (10) analogous to

the derivation leading to the result in (11), it may be shown that the

canonical correlation in this case is

(m)
p = ——— 1 sm <min(nl, n2).

n e ’
(pp(r)y
On the other hand, note that from (14)
iw,x -iw x mw, +w
1 e‘1 22sech -—]—-———-z-dmdu)
4 2 2 172
T =0 J=co

m—1
_ 2 m o, . 2 1 s -
“Tmo T TGl g [@ exp(- 10y(x; = %)) Jdu,

=1 n 2
=t T TG+ x|, - xp

where 6(x) denotes the Dirac delta function.

A double convolution operation applied to (13) then yields the following

expression for p(x], x2)

2n]+n241n-3
p(x), X)) = — r r
n(m-1)!(nl-m-l)!(n2-m-l)! —o /=

n, - m
[l o)

2
|r('§ + i(x] - u))|<§(:-:2 - v - x, + u)dudv

1
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n]+n2+m-3 P A -m 2
2 1 .
JLIrP el
7 (m - l)!(n] -m - l)!(n2 -m- 1)/
n 2 n, - m 2
lF[E + i(x1 - u)]l lF[ 5 + i(x2 - X + u)) du. (15)

Finally, the result in (15) may be rewritten into the following Barnes type
contour integral
n,+n,+m-2

p(x,, x,) = 2! ’ L J_lm F[n]-m-+s]FIm-ix +s)
’ = . T —_ - .
P2 et iyt T e L2 2

n,-m

2

n]—m m nz-m
r + 1(x2—x])+s)r[—2-— s}l‘[§+ lxl—s)FI 5~ 1(x2-x])—s)ds

which may be evaluated in terms of a sum of 3F, functions [13, p. 133] or,
perhaps more conveniently, in terms of Meijer's G-function as follows [7,
Sec. 5.3]

n,+n,-m-2
2 172

"2(m - Di, -m- i, -m- D}

p(xl > xz) =

non . b
13 1 - 5 sy 1 -3+ ix,, 1 - 5 - 1(x2 - xl)
63’50 .
n] s m . n, - m .
7 2 =7 iy o xp)

The existence of a diagonal expansion then implies the following summation

formula

= D', @) ()
S @y Al fa . G )

(a, = D, = D! .

Y ' ' : n n n n
@ - i, ~m=- Diny-m- D r[-‘- +x])r[—l-xl]r[—2+x2]r[72-xz}
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m
+x., 1-

) cg’g 1 (16)
9

_
1
Nl
-
N

(N1}
+
™

for 1 g m < min(nl, n2), < x <@ e <X, <@,

It is perhaps interesting to note in passing that a comparison of the two
results in (12) and (16) allows us to deduce the following special case of the
G-function, viz.

1 -
bhobex, 14x ox, 2 x| .
1 = 7T sec - sec —5— sec

i, 3+ X1 i+ X7 X

ﬂ(x2 - xl)

2
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