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ABSTRACT. Using the technique of canonical expansion in probability theory,

a bilinear summation formula is derived for the special case of the Meixner-

Pollaczek polynomials {%(k) (x)} which are defined by the generating function
n

Z %(k)(x)zn/n (I + z)(x-k)/(l z) (x+k) JzJ < I.
n

n=0

These polynomials satisfy the orthogonality condition

_
Pk(X)(k)(ix)(k)(ix)dx (-l)nn.’(k)nBm n’m n

with respect to the weight function

P l(X) =sech x

Pk(X) F_

_
sech Xl sech x

2

sech (x- x! Xk_l)dXldX2 dXk_ , k 2, 3,
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1. INTRODUCTION

Let U be a Cauchy random variable with the probability density function

(p.d.f.)

f(u) 2
< u < m.

+u

Consider the transformation U sinh V. The p.d.f, of V is

p(v) sech v, < v < (R). ()

This is the hyperbolic secant distribution considered by Baten [2], and is a

special case of the generalizdd hyperbolic secant distribution treated by

Harkness and Harkness I0].

Let X and X
2

be two random variables having additive random elements

in comnon [6], i.e.

X V + V
2

X
2 V

2
+ V

3

where V. (i I, 2, 3) are mutually independent random variables each

having the p.d.f, given in (I). The joint p.d.f. P(Xl, x2) of X and X2 is

easily shown to be

p(x l, x2)

_
sech z sech w(x z) sech w(x2 x + z)dz

x x
2sech -- sech -- sech

(x
2

xI)
2

< Xl < (R)’ (2)

-<x2 < =.

The marginal p.d.f.’s for X and X
2

are respectively
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g(xl) -o P(xI’ x2)dx2 2xl cosech Xl,

h(x2)

_
P(Xl, x2)dx 2x

2 cosech x2.

()

The orthogonal polynomials with the above marginals as weight function are

related to the Euler nt,bers and have been discussed by Carlitz in [4].

Specifically, for the weight function

Pk(X) .. .. sech Xl sech x2 ’’’sech (x Xl x2

)dx ldx2 dXk_ I, k 2, 3, (4)

P l(X) sech x,

the polynomials In(k) (x)} with generating function

Z (k)(x)zn/n’. (l + z)(x-k)/(l- z) (x+k), [z[ <
nffi0 n

(5)

are the orthogonal polynomials in the interval (-, ) and satisfy the

orthogonality condition

_
Pk(X) x(k) (ix)X

(k)
(ix)dx (-l)nn (k)

n m,nm n
(6)

where i /Z and denotes the Kronecker delta.m,n

The explicit form of the orthogonal polynomial is given by Carlitz [4] as

n 2rI(x k))in + k )x(k) (x) Z
n r--O r n r

(-l) n(k)
n 2

F [-n, (x + k); k; 2]. (7)

The last result follows easily from the following well-known generating function

for the Gaussian hypergeometric function 2Fl [7, p. 82]
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(I +z) b-C[l + (l x) z]-b 7. I-n, b; c; x]zn

n=0

A related system of polynomials has been discussed by Bateman who

referred to them as the Mittag-Leffler polynomials. It happens that both the

polynomials discussed by Bateman and Carlitz are but special cases of the system

of orthogonal polynomials first discussed by Meixner Ill] and later

independently by Pollaczek [12]. Following the notation of [8, p. 219] (See

also [5, p. 184]), the Meixner-Pollaczek polynomials are given explicitly by

-2iP(a)(X;n ) (2a,)nn,. ein 2Fl[-n, a + ix; 2a; e (8)

where a > 0, 0 < < and < x < (R).

These polynomials are orthogonal with respect to the weight function

2a-(a)
(xl )

(2 sin ) e-(-2)r(al + i) 12o
11"

The orthogonality relation is given by

co(a) (x; )p(a) (x; )p(a) (x; )dx cosec
r(2a / n)

m n n’. m,n"

A generating function for p(a) (x; ) is
n

7. tnp (a)(x; ) (l tell) -a+ix (l te-i)-a-ix, it < I.
n--O n (9)

It is clear when comparing (7) with (8) or (5) with (9) that

(-i)nl(nk)(ix) nl P(k/2)(x/2; /2), k l, 2, ...; n 0, I, 2,n

and thus 1
(k) (x) may be regarded as a special case of the Meixner-Pollaczekn

polynomials.
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2. A BILINEAR SUMMATION FORMULA

From the generating function in (5) it is innediately clear that %(k) (x)n

satisfies the following so-called Runge-type identity

(kl +k2) n I)x(kl)(x + .
n x2" rr=O

(k2)
(x2) k k

2
2 3 (I0)(Xl) n-r I’

and all n.

It has been shown that the result in (I0) is both necessary and suffic’ient

for the joint p.d.f, in (2) to possess a bilinear expansion (also called a

canonical expansion in statistical literature) of the form [6]

P(Xl, x2) g(Xl)h(x2) Z Pn0n(Xl)n(X2)
r--O

where the canonical variables {en(X) } ({n(X) }) are a complete set of

orthonormal polynomials with weight function g(x) (h(x)). The canonical

correlation is

Pn E [0n(Xl) n(X2)
where E denotes the expectation operation.

For the joint p.d.f, in (2) with the equal marginal p.d.f.’s given in (3),

we note that the canonical variable in this case is

.-n
i (2) (ix).8 (x) On(X)

/n’.(2)n n
n

The canonical correlation is

0n E[On(Xl)On(X2)

(-l) -n

n’. (2) E{X(2)n [i(Vl + V2) ]X(2)n [i(V2 + V3) ]}
n

r. r. E[X )(iv)]
n 2)

n
r
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E[I(1)(iV2)I(I)(iV2)]E[I(1)(iV3)]n-r s n-s

E[l(1).(iV2) ]2n’. (2)
n

n

n+
(II)

We therefore have the following interesting bilinear sunmation formula for

the Meixner-Pollaczek polynomials

(_l)n A(2) (ix
Xl x2

Z )(2)(ix2) sinh -- sinh sech
nffiO [(n + 1):] 2 n n

r(x
2

x 1) /
2 /( 2Xl x2)

< x < and < x2 < oo. (12)

3. A GENERALIZATION

Consider the following more general scheme of additive random variables as

in [9].

Let {i } for i l, 2, n m, {ni} for i l, 2, m

and {i } for i l, 2, n
2

m where .< m < min(n l, n2)
be (n + n

2
-m) mutually independent random variables each having the p.d.f.

given in (1).

Define

nl-m m n2"m
U Z _Ei, V Z n-, W 7. .

i=l i=l i=l

X =U+V

X2=V+W.
It is clear that the joint characteristic function (l’ 2 of X and

X
2

is

(l’ 2 E[exp(iIXl + i2X2)
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E{exp[iiU + i2W + i( + 2)V]}

sech sech
m 2

sech 2

since EeiqJ] EEei%]
sech v dv

sech() for < i .< n -m,

.< j .<m,

.<k.< n2-m.

The joint p.d.f, in question is therefore

f=of -it lXl-it2x2
P(X x2) 42

sech sec

mI + 2)d d
2sech

2

and the marginal p.d.f.’s for X and X2
are respectively

g(x e sech dm

nl-I
7 (n I)’. F + ix
_

-im2x2 n21h(x2) e sech d
2

n2-1
2

n (n
2

1)

on using the fact that [3, p. 31]

(13)
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-ivx 2u IF[ + P + iv/8) 12e [sech(Sx + y) ]U+ldx -- r(u + 1)
eiVy/8 (14)

The respective canonical variables are

.-n (n 1)
On(X l)

x X (ix l)/n n

-n (n2)
n(X2)

I
(ix2)

n’-(n2) n
n

By a repeated application of the Runge-type identity in (I0) analogous to

the derivation leading to the result in (l|), it may be shown that the

canonical correlation in this case is

(m) n
n

l(nl) n(n2 n

.< m < min(n I, n2).

On the other hand, note that from (14)

1"-!-42 -oo -=o eitlXl-i2x2 seth
m[ +t2)dt2 dr2

2
m-1

m 2 2

_
exp[- i2(x2 Xl)]d2

2
m-1

m 2,,,( ,): It(7 / ix)l (x2 -xz)

where (S(x) denotes the Dirac delta rune=ion.

A double convolution operation applied to (13) then yields the following

expression for p(x I, x2)
n +n2m-3

I’P(Xl’ x2) 3(m- l):(n -m- l):(n
2 -m- 1)’ 2

r 2
+ iv Ir( + i(xl (x2
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nl +n2+m-3
(m l)’.(n m l)’.(n2 m )’.

n m
F

2

2

r + i(x u) F 2’ + i(x
2

x + u) du. (15)

Finally, the result in (15) may be rewritten into the following Barnes type

contour integral

nl +n2+m-22
P(Xl’ x2) 2

(m-l) ’.(nl-m-l) ’.(n2-m-l)
l_J_ F + s F ixl+s2wi

_i

n2-m Inl;m )I+i(x2-xl)+S F -s F +ixl-s F -i(x2-xl)-S ds

which my be evaluated in terms of a sum of 3F2 functions [13, p. 133] or,

perhaps more conveniently, in terms of Meijer’s G-function as follows [7,

See. 5.3]

P(Xl x2) 2 (m l)’.(n

nl +n2-m-22

m l)’.(n2 m l):

G3, 3
3,3

n -m n2-mm i -x)
2

+ iXl, 2 (x2

n m
m

n
2

m
i(x

2 Xl)2 2
+ ixl’ 2

The existence of a diagonal expansion then implies the following summation

formula

(-I) n(m) k(n (n2)n (x) k
n (x2)E n’. nn=O (nl)n n2)n

(n l)’.(n
2

l):

2m(m l,):(n m l):(n2 m 1).
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3,3
G3, 3

n
2 mn m

m
2 .. + x 1, 2 (x2 Xl)

n
2

mn| m
m

2
+ xl’ 2 (x2 Xl

(16)

for .< m < min(nI, n2), < x < , < x
2

< .
It is perhaps interesting to note in passing that a comparison of the two

results in (12) and (16) allows us to deduce the following special case of the

G-function, viz.

3,3 -- sec -- sec sec

1/2, + x 1, + x x
2

(x
2

x
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