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ABSTRACT. In this paper we prove that the Stone-Cech-compactification of the
natural numbers does not admit a countable infinite decomposition into subsets
homeomorphic to each other and to the said compactification.
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1. INTRODUCTION.

Let N be the discrete topological space of all positive integers and let B(N)
be its Stone-Cech-compactification. Then to each decomposition of N into a finite
union of infinite sets, viz. homeomorphic to N, corresponds a finite decomposition
of B(N) into subsets homeomorphic to each other and to B(El. This properg§‘fails

to hold for countable decomposition of N. 1Indeed, if N =iU Z into

1 %o let f map Z

i
1/i, 1 = 1,2,..., and let V be an infinite subset of N such that V [] Zi is finite

for all 1. Then f has a continuous extension over R(N) which we shall also denote
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by f and the following hold:
a. U # VU since U is compact but V is not.
b. f maps V-V onto O.
- 4o -
c. V-V is not a subset of \JZ; because f maps Z;
)
onto 1/i. i=1 '210-0
Nevertheless, it is impossible that ﬁ(N) might have some other
countable decomposition into subsets homeomorphic to each other and
to g(N). Indeed, an assertion that this is the case, wrong as we
will prove below, appears as an exercise in Dugundji's Topology

(Exercise 9, page 256, Chapter XI, Eleventh Printing).

2. RESULTS.

In this section we will prove that the assumption that @(N)
admits a countable decomposition into subspaces homeomorphic to B(N)
is self-contradictory. We suppose therefore that g(N) =E§iﬁi ’
that this union is dis joint and that all Ui's are discrete subspaces
of B(N). Under this assumption we will prove that N interssects
infinitely many Ui's and that it is contained in their union. Then,
we will pick from each Ui the least element of Uin N and we will
prove that the set thus formed has a closure that is not a subset
of gﬁi‘ That, of course, will be a contradiction.

We have then:

LEMMA 1., For every subset T of N and svery subset A of §(N),

TAR =TAA (1)

PROUF. T is open in N (N is discrete) and N is locally compact.

LEMMA 2. There are infinitely many i's such that Uif\N is

not void.,
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PROOF. By the previous remarks uin N = Ui(\N. and therefore
N is the union of the (Uiﬂ N)'s. If UjnD N = B for i = kel, K42,000,
then

- = W v _
B(N) = N =¥1(Na uj) = H(Nq ”1>98,“i (2)
and this is impossible. Hence the lemma.

On the basis of this lemma, we can consider the family
{ui\ i=1,2,3,...% as the union of two families:

The first is infinite countable and contains all Ui's which
intersect N. Wwe shall refer to it in the future as {Vj} .

The second may be void, finite or infinite countable and con-
tains all Ui's which do not intersect N. We shall refer to it as
{wjz .

Let Zi = vin Ny, i=21,2,3,..., (3)
and let A be the set formed by picking the least element of each Zi'
Then we can construct a family {m(t)‘ t is a real numbeg} whose
elements are infinite subsets of A and satisfy: if s £ t, then
m(s)Nm(t) is void or finite.

One way to construct such a family is to enumerate the set of
all rationals Q, Q = slrn] neN} » to choose for each real t a
sequence irn(k.t) ::1 which converges to t and has infinitely many

terms different from t, and to put,

n(t) = {z\?or some k, z is the least element in Zn(k.t{} . (4)
Then,
LEMMA 3. For every t, mn(t) # m(t). (5)

PROOF., M(t) is compact and M(t) is not.

LEMMA 4. For every t, M(t) is an open subset of $(N).

—

PROOF. N = () U A=M(t) and the union is disjoint. [Extend
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continuously over N a function that is 0 on M(t) and 1 on N-M(tE] .
LEMMA 5. If t # t', then m(t)Qm(t') = m(t)Qam(t*). (6)
PROOF. M(t)QOM(t') is finite and M(t') is open in B(N) which

is Hausdorff. Therefore,

wE) OVm(tr) = m(e) AmM(t"). (7)

By the same token, (ﬁ?g) is open and ﬁf?)nm(t') is finite)
mee)nm(er) = m(e)Am(er) = m(e)Qm(t’). (8)
Let e =BV -7, (9)
and u(t) = Pam(t). (10)

LEMMA 6. For every t, U(t) # #.

PROOF. Let f be a function which maps Z; onto 1/i. If x is in
W(t) - m(t), then f(x) = 0. On the other hand, F(Z,) = 1/1. Hence
the lemma.

LEMMA 7. For every t, U(t) is an open-closed set in P and for
every t and t', t £ t°,

u(t)Ou(e') = g, (11)

PROOF. That u(t) is open-closed follows from the construction of
M(t) and Lemma 4, That U(t)(\U(t')v= g follows from Lemma 5, and
the fact that m(t) and m(t') are subsets of N,

Since the union of all V 's and wj’s is a countable set and
{U(t)l.tejg is an uncountable set of pairwise dis joint sets, there
is a t' such that U(t') does not meet any Vj's or wj's. Let x be
a point in U(t'). Then,

LEMMA 8. x does not belong to Uj‘ 32192434600

PROOF. x does not belong to Ej by the very construction of

4%
u(t*). On the other hand, vy - zj is a subset of B(N) -Uzi
(54}

Indeed, we remark that:
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(a) The Vj's have the discrete topology and
(vj-zj;ni_i:(vj-zjmzj#ﬂ (12,
and
(b) If k # j, then
(v, - zpn 'z'ke Ugav, = 8. (13)
If every neighborhood of x in Q(N) met \lj - Zj. then U(t')
would meet it. Since this is not the case, then x is not in Vj -Zj.
Hence the lemma.
LEMMA 9. x does not belong to TJJ.. J*1,2,3, 044
PROOF . ﬁj is a subset of P, If x were in ﬁj' every neighbor-
hood of x, and in particular U(t') would meet WJ' But this is not

the case.

As a result of Lemmas 8 and 9, we see that U(t'), by construction
a non-empty subset of B(N), does not have any element in common

with B(N). Therefore, our supposition was false.
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