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ABSTRACT. Let (X,d) denote a locally connected, connected separable metric space.
We say the X is S-metrizable provided there is a topologically equivalent metric

p on X such that (X,p) has Property S, i.e. for any ¢ > 0, X is the union of
finitely many connected sets of p-diameter less than €. It is well-known that
S-metrizable spaces are locally connected and that if p is a Property S metric for
X, then the usual metric completion (i,;) of (X,p) is a compact, locally connected,
connected metric space, i.e. (i,;) is a Peano compactification of (X,p). There
are easily constructed examples of locally connected connected metric spaces which
fail to be S-metrizable, however the author does not know of a non-S-metrizable
space (X,d) which has a Peano compactification. In this paper we conjecture that:
If (P,p) a Peano compactification of (X,plX), X must be S-metrizable. Several
(new) necessary and sufficient for a space to be S-metrizable are given, together

with an example of non-S-metrizable space which fails to have a Peano compactification.
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1. INTRODUCTION.

Throughout this note let (X,d) denote a locally connected, connected separable
metric space. We say that X is S-metrizable provided there is a topologically
equivalent metric p on X such that (X,p) has Property S, i.e. for any ¢ > 0, X
is the union of finitely many connected sets of p-diameter less than e. It is
well-known that S-metrizable spaces are locally connected and that if p is a
Property S metric for X, then the usual metric completion (i,;) of (X,p) is a
compact, locally connected, connected metric space, i.e. (i,;) is a Peano
compactification of (X,p) [ 8,p.154].

Property S metric spaces (X,p) have been studied extensively in [1,2,3,4,8].
There are easily constructed examples of locally connected, connected metric
spaces which fail to be S-metrizable, however the author does not know of a non-
S-metrizable space (X,d) which has a Peano compactification. We therefore ask:

QUESTION 1. 1If (P,p) is a Peano compactification of (X,plX), must X be S-
metrizable?

2. DEFINITIONS AND BASIC RESULTS A space Z is an extension of a space Y if
Y is a dense subspace of Z. If Z is an extension of Y, we say that Y is locally
connected in Z if Z has a basis consisting of regions (that is, open connected

sets) whose intersections with Y are regions in Y. Z is a perfect extension of

Y if Z is an extension of Y and whenever a closed subset H of Y separates two
sets A, BCY in Y, the set clzll(the closure of H in Z) separates A, B in Z. [6]
For completeness we include the following:
THEOREM 2.1 [6]. Let Z be an extension of X. Then X is locally connected
in Z if and only if Z is a perfect locally connected extension of X.

THEOREM 2.2 [6]. Let (X,d) be a metric space. Then X is S-metrizable if



PEANO COMPACTIFICATIONS AND PROPERTY S METRIC SPACES 697

and only if X has a metrizable compactification Z in which it is locally con-
nected.

THEOREM 2.3 [6]. A topological space is S-metrizable if and only if it has
a perfect locally connected metrizable compactification.

THEOREM 2.4 [6]. Let X be a space having a perfect S-metrizable extension.
Then X is S-metrizable.

THEOREM 2.5 [5]. Let X be a separable, locally connected, connected rim
compact metric space. Then X is S-metrizable.

THEOREM 2.6 [6]. Every countable product of S-metrizable connected spaces
Xl’ xz, «s oy is S-metrizable.

3. RELATED RESULTS AND QUESTIONS.

THEOREM 3.1. Let (P,d) be a Peano space and let X be a dense, locally con-
nected, connected subset of P. Then there exists a Ga-subset Y of P containing
X such that X 1s locally connected in Y (as an extension of X).

PROOF. Let n be a positive integer and define Zn = {yEP: if U is an open
connected subset of P containing y and §(U) <2-n, then UNX is not connected}.
(Here §(U) denotes the d-diameter of U). We first assert that Zn is closed. For
SUpPOSe ¥y, Yps ¢ -+ is a sequence in Zn which converges to y € (P\Zn). Since
yézn, there exists an open connected subset U of P containing y and §(U) <2-n
and UﬁZn # ¢ and this is a contradiction. Hence Zn is closed.

We next assert ZnﬂX =¢. For let x€X and let V be an open connected subset
of X such that g§(clv) <2-n. Then U =int clV is open in P and contains x and
5 (U) <2-n. Furthermore, UNX is connected since VeUNXgcclV and V is connected.
Thus xéZrl and Z NX=¢.

Clearly Zch cZ,...1s a monotonically increasing sequence and if for

273
-]
each i>1, Yi=P\Zi’ Y=n Yi is a connected Gé-subset of P which contains X.
i=1
We now assert that X is locally connected in Y, as an extension of X. For

-n
let ¢ >0 and let y€Y. Then there exists a positive integer n so that ¢ >2 ,
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and since yGZn, there exists an open connected subset U of P with §(U) <2™™ and
such that UNX is connected. This implies that w=inth1YU is an open connected
subset of Y. Thus Y has a basis.consisting of regions whose intersection with X
is connected. This completes the proof.

COROLLARY 3.1.1. Every dense, locally connected, connected GG-subset of a
Peano continuum is S-metrizable if and only if dense, locally connected, con-
nected subset of a Peano continuum is S-metrizable.

PROOF. This follows from (2.1), (2.4) and (3.1).

Since every nested intersection of countably many sets can be represented
as an inverse limit space and since every Yi above is S-metrizable, by (2.5),
we ask:

QUESTION 2. 1I1f {Yi’ fi’j,lﬂ is an inverse limit sequence of S-metrizable
spaces and continuous maps (bicontinuous injections), must Yw = inv lim [Yi,

£ N1 be S-metrizable?

ij’
Of course an affirmative answer to Question 2 would yield an affirmative
answer to Question 1.

THEOREM 3.2. Let (X,d) be a locally connected, connected separable metric
space, let BX denote the Stone-Cech compactification of X. Then X is S-metriz-
able if and only if there exists a Peano compactification P of X such that pf,
the continuous extension of the identity injection f:X 4P to BX, is monotone.

PROOF. Recall that a map between compact Hausdorff spaces is monotone if
every point inverse is connected. Suppose that (X,d) is S-metrizable, say p is
an S-metric for X. By (2.3), there exists a Peano compactification P of X and X
is locally connected in P. Let Bf:pX +P be the continuous extension of the
identity map f:X 4P to pX. We need to show that for y€P, af-l(y) is connected.
But since P is a metric space and X is locally connected in P, there exists a

cU, and

neighborhood basis for y in P, {U 1

such that for i€ N, clU:H_

©
i}i=1 1
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Uiﬂx is connected. Then, if gf-l(Ui) =W, sf-l(UiﬁX) =f-1(UinX) is connected
and winx=gf'1(uinx). Thus by (l.4) of [7], Wi is connected. It then follows
that Bf-l(y) =iEICI Wi is connected and that completes the proof of the necessity.

Now suppose (P,p) is a Peano compactification of X and pf:pX 4P is a mono-
tone map. Let y€P and let V be an open connected subset of P containing y.
Since gf is monotone, af-l(V) =W is a connected open subset of BX. Again, by
(1.4) of [7], WNX is connected. This implies that BE(WNX) =£(WNX)=VNX is
connected and /so X is locally connected in P. By (2.3), S is S-metrizable.

4. AN EXAMPIE. This is an example which fails to be S-metrizable, however
it also fails to have a Peano compactification.

Let L, be the line in R’ defined by L, ={(,y):y=x/1,0sx<1} and let X =
G Li with the relative topology inherited from R2 . We first assert that X is
not S-metrizable. For in any (Hausdorff) compactification Z of X, Ui=Li\{0,0)}
is an open subset of Z and since A = {(0,0)} is compact, A and B= igl{(l,i-l)l are
subsets of X whose closures are disjoint in Z. Thus if Z is a metric space with
metric r and the distance from A to clzB is ¢, then ¢ >0. It then follows that
no finite collection of connected sets with r-diameter less than ¢/2 fails to
cover Z. Thus r is not a Property S metric for Z and X is not S-metrizable.

We will now show that X fails to have a locally connected metric compacti-
fication. Suppose (Z,r) is a locally connected metric compactification of X.
Let U and V be open subsets of Z containing (0,0) such that clUcVc (Z\c1B) (B
is defined above). Then each Li intersects bd U and bd V and contains a subarc
Si such that Si;(cl VAU) and §, meets each of bd V and bd U in a single point,
say Siﬂbd V= {ai} and Siﬂde= {bi} . Without loss of generality we may suppose
that {ai}mi=1 converges to a point a€bd V and {_'bi')}c'::=1 converges to a point b €bd
b€bd U. Then L=1im sup [Si:ié N} is a connected set subset of c1WU meeting

bdU and bd V[8, p. 14]. Then since every point of IN(bdUybdV) is a limit
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point of iUlsi and each Si is a component of ¢l VWU, Z fails to be locally con-
nected at any point of I\(bd Uybd V). Thus X fails to have a Peano ¢ompactifi-

cation.
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