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EXISTENCE THEOREM FOR THE DIFFERENCE EQUATION
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ABSTRACT. For the difference equation

= Y
£(Y )
sufficient conditions are shown such that for a given YO there is either a

unique value of Y. for which the sequence Yn strictly monotonically approaches

1
a constant as n approaches infinity or a continuum interval of such values.
It has been shown previously that the first alternative is related to the
existence of a Peierls barrier energy in the dislocation model of Frenkel and

Kontorova.
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1. INTRODUCTION.

In this paper we discuss the conditions for the existence and uniqueness
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of the solution to the nonlinear difference equation

Y -2Y +¢Y
n

ntl n-1

= £(Y ) (1.1)
h? n

introduced in § 3 of Hobart (1965). As stated there, the boundary

conditions are

n=>0 (1.2a)
0= Yl <7 (1.2b)
s.m.
Yn —3P T as n * ® (s.m.: strictly (1.2c)
monotonically)

The function f is odd, twice differentiable, negative on the interval
0 <Y <T and zero at the ends of this interval. We assume also that
f has been standardized according to § 3 of Hobart (1965). This

assumption gives us reason not to incorporate h? in £.

2. DEFINITIONS.

Consider first the difference equation (l1.1) together with the
conditions (l.2a) and (1.2b) only. For a given Y, we can choose
arbitrarily a value of 0 = ¥, < T and then, step by step calculate

Yn . Only three cases occur

Yo <Y <., <Y ST<Y (2.1a)

Yo <Y, < ... <Y 2Y with Y <,
n
(2.1b)

Y, <., <y < <. < .
Y, <<Y, Yo<Y u (2.1c)
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We shall call a value of Y, for which (2.1a) [(2.1b) or (2.lc)]
holds, a "large” ["small" or "correct"] Y, . Furthermore a "too
large" ["too small"] ¥, is a large [small] Y, for which any larger
[smaller] ¥, is large [small].

We notice that the Yn's corresponding to a correct Y, form a
strictly monotonically increasing sequence bounded by T . Thus the
Yn's have a limit £ as n approaches infinity. The limit £ must
satisfy £ - 28 + & = h%? £(2) or £(&) = 0 for which, according to
the restrictions stated in the introduction, the only suitable root is

m.

3. THEOREM I.

Y - = h? ,
If Q-2 tY o= h?E()

nt
2 ..

Q__ELXL = £(Y) exists,
ay?

Y, is constant,

1+h? £(¥) >0,
4 <n=<m implies O < Yn <Y <®w, and

-2 n-1

£(¥Y) >0 on O0<Y<T;

ay
then 2> ¢} for each 2=n=m.
4ay
n-1
dYn
PROOF. We first show T >0 for n =2 and n=3:

n-1
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ay, .
-ﬁ-l—=2+h2f(yl)>l>0, (3.1)
av, avr,
and d—y—;:Z-E:'Fh f(Yz) ’ (3.2)
dY3 ) *
—_— > . .
so i, 1+ h? £(Y,) >0 (3.3)
day Y2
Now we show I 5o for 4 <n <m assuming >0
ay ay
n-1 n-3
ay
n-1
and FY7 >0 :
n-2
ar_ a _, -
T 2 g o t+thtE( ). (3.4)
n-1 n-1
dYn
Thus —_— >0 if
dy
n-1
h? £(y ) >-2+ L (3.5)
( n-1 dYn_3 , - :
(2 - air——-+ h f(Yn 2))
n-2
dYn-l
Since = > 0 has been assumed,
n-2
dYn 3 .
- 2
= <2+h f(Yn_z) (3.6)
n=-2
But 4 <n<m so 0<Y _<Y _<7 and £(¥) >0 on
n-2 n-1
0<Y <y<m,.
n-2
Th < g
us £EMg) < £m, (3.7)
dy
. . n-3 2 2
resulting in F<2+h” £(m. (3.8)

n-2
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<
And also f(Yn_z) f(Yn_l) . (3.9)
ay_
Using (3.8) and (3.9) we can modify (3.5) to T >0
n-1
. 2 ° 1
if h? £(yv_ ) > -2 + . . . (3.10)
n-2 (h? {£(v__) - £(m})
n-2
day
Noting (3.7) we obtain 2_ >0 if
n-1
2 2 2 _n2 ¢ 2 .
[h* £0v,_)]%+ (2 - 0% £m) [% £(v )]
(3.11)
- (1+2n2£m)<o.
The two roots of this polynomial in h?2 f(Yn_z) are such that
r_<-2 and h% f£(m < r, . With (3.7) we obtain
<n?f < .
r_ h f(Yn—Z) r, (3.12)

on which range the polynomial is negative so (3.11) is satisfied.

dy
Thus —2_ >0 for each 2 =n <=m.

Y
d n-1
4., THEOREM II.
Under the assumptions of Theorem I and the additional assumption

that f(Y) <0 on 0 <Y < T, we show that large implies too large

and small implies too small.

PROOF. Assume a constant value for Y, and an initial value
of Y, = Y% that is large. This means there is an N such that Y,
and Y% through Yn+1
L L L
< < ... < =< <Y
Yo <4y WET N+1

Y, is increased, YN+1 must also increase until YN =T. By

2 .
- 2Y Y =
2 n + n h f(Yn) give

-1
. By Theorem I (with m = N+ 1) if
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Theorem I (with m = N) if Y, is further increased, now YN must

also increase until YN-l =T. Since N is finite, repetition of

this process can be continued giving finally that Y, must also
increase until Y, = W. During each step Y, is large. Thus if

Y, = YL

1 , 1is large, all Y, > Y? are large.

Assume a constant value, for Y, and an initial value of Y, = Yf

that is small. Now suppose there is a smaller Y, = Yf that is either

*

large or correct. If Y,

were large, this would contradict the argu-

ment that large implies too large. If Y: were correct, we would also

have a contradiction. Since Yf is small, there is an M such that

S S _ S . s
Yo <¥) < ... <Y 2vY . with 0=Y <m. (If Y¥; <Y, that

small implies too small is trivial). The assumptions that £(Y) < 0

< < - = 2 i
on O Y m and Yn+1 2Yn + Yn-l h f(Yn) glge that there must
be a first Yi <0 for some O0<p<M+1+ {—;5—}%;37} with no
- n

S
Y 27 for 0<n<p. If below Y? there were a correct Yj ,

then by Theorem I (valid for all n if Y, is correct and for all
n to and including N+ 1 if Y, is large) as Y; is increased
from YT either all Yn’s increase or at least one Yn > 7T with no
prior Yn <0 (n# 0). For neither case can such a Y; be small.
There is a contradiction in assuming a correct Y, below a small

Y,. Thus if Y, = ¥, is small, all Y, < ¥; are small.

5. ALGORITHM.

If f£(Y) <0 on 0 <Y< T and zero for the end points, and if
the assumptions of Theorem I are satisfied, we can by the algorithm
described in § 2 of the paper by Hobart (1965) construct a correct
value of Y; for a given Y, . This involves choosing an interval

bounded above by a large Y; , and below by a small Y; (initially
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0 <Y, <7, testing the midpoint for large or small, retaining the
(half) interval bounded as the original, and repeating the process on
this interval.

If the midpoint is at no step correct, this process leads to a
unique limit point which we shall now argue must be a correct point
and the only correct point. Certainly there are no correct points to
be found on the discarded intervals for if the midpoint is large
[small], the discarded interval contains only points which are large
[small]. sSince f is differentiable, it is continuous. Thus all
points in an infinitesimal neighbourhood of a large [small] point must
be large [small]. But the limit point has in its neiggbourhood both
large and small points, so it must therefore be a correct point and
the only correct point.

If the midpoint is at some step a correct point, either it is the
only correct point or there is a continuous interval of correct points.
Two correct points cannot be separated by a large [small] point since
above [below] a large [small] point there can be only large [small]
points. A test can be made which distinguishes between an isolated
correct point and a continuum interval of correct points: If a
midpoint ¥, = Yf is correct, apply the algorithm described above
separately to the intervals Y? <Y, <m and 0 < ¥ < Yf . If at
no step for either the midpoint is correct, then Y? is unique. If
the midpoint for either is at some step correct, then there is a

continuum interval.

6. THEOREM III.
Unless the result of the algorithm is a continuous interval of

correct values of Y, , it defines a unique Y, = g(Y¥;) for each Y,

75
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on 0=Y, <7 since it is easily verified that Y, = T is large and
Y, = 0 is small. For application to the Frenkel-Kontorova model, we
need the domain extended. Define B = g(0) and note that necessarily
B < ™. We now extend the domain of definition g to include

-B < ¥y < 0 by showing that for Y, in this domain Y, = 0 is small.
Relabel Y ., = ?n. If ¥, = B is the unique correct Y, for

Y, = 0, then all 0< ¥, < B are small for ¥, = 0. Noting that

f£(Y,) =0 so that Y, = -¥,, it follows that ¥, = 0 is small for

each 0>y, >-8.

THEOREM III. If the assumptions of Theorem 1 and the additional
assumptions that £(Y) <0 on 0<Y <7 and f(Y) =0 for Y=0
or Y = T are satisfied, then either for each 0 = Y, < 7 there is
one and only one correct Y, = g(Y¥,) and for each -g(0) <Y, <O
there is one and only one correct Y, = g(Y;) or for some

-T < ¥, <m there is a continuous interval of correct values of Y, .

7. APPLICATION.

Assuming the function f is odd and that for the function f
chosen there is no continuum of correct Y, values, we can use the
function g to define the path of configurations connecting II with I
in the Frenkel-Kontorova (1938) model as generalized in Hobart (1965).
For a given =-g(0) < ¥y < g(0), Y, is chosen so that Yn Sy
as n *> *, that is Y, = g(Yo); and Y_; is chosen so that

S.m.

Yn ——>3-T as n > -, that is Y, =-9 (-Y,). The difference

equation (l.l1) is satisfied for all n except zero for which
g(Yy) - 2Yy - g(-Y,)

(Yy) = £(Yy) - (7.1)
h?
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is the nonzero external force only on the zeroth atom which is

necessary to hold static a general intermediate configuration. The

configurations I and II are given by the conditions that Y, = Y% =0

and Y, = Yzl = -g(YgI) < 0 respectively. The connecting path is
given by YiI =Y, = Y§ . The barrier energy is
I
¥,
V(I) - V(II) = I (&) ag (7.2)
YII

0
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