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ABSTRACT. A class of analytic functions in tube domains TC = R" + 4C in n-
dimensional complex space, where C is an open connected cone in Ifl, which has

been defined by V. S. Vladimirov is studied. We show that a previously obtained

L2 growth estimate concerning these functions can be replaced by a pointwise growth
estimate, and we obtain further new properties of these functions. Our analysis
shows that these functions of Vladimirov are exactly the Hardy H2 class of

functions corresponding to the tube TC.
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1. INTRODUCTION.
All notation in this note is that of Vladimirov [1, p. 1]. Let C be an open

connected cone in R" and let C' be an arbitrary compact subcone of C [1, p. 218].
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Let f(z) be analytic in ™ = B + iC and for any C' &< C let f(z) satisfy
HeGei] L= (] et 2 a0 < (¢ 7 yecec, @
L2 =B — €,

for every € > O where the constant M (¢') depends on €, f, and C' but not on

>
Yy € ¢' € C. Vladimirov has studied these analytic functions in [1, sections 25.3-
25.4]. 1In this note we show that the L2 growth estimate [1, p. 227, (74)] can be
replaced by a pointwise growth estimate on the function with exactly the same
growth on the right of the estimate and obtain further new information concerning
these functions. Our analysis also shows that the analytic functions of Vladimirov
defined above are in fact exactly the Hardy H2 functidns ([2, section 3] or [3,
pp. 90-91];) thus the growth of Bochner [2, (13)] which defines the Hardy G space

for tubes TC, namely

[eG+iy) || , <M. ,yecC, (2)
L

is not a more restrictive condition than (1), contrary to the statement made in
[1, p. 227, lines L4-5], in the sense that both (1) and (2) characterize the same
space, the Hardy H2 space corresponding to tubes TC .
2. RESULTS.

To obtain our results we need three lemmas. The proof of Lemma 1 is like
that of [1, p. 223, Lemma 2] and is omitted.

LEMMA 1. Let C be an open (not necessarily connected) cone. Let y € 0(C),

the convex envelope of C. There exists a § = Gy > 0 depending on y such that

vt > 8 [y] [|t] (3)
for all t € C* = {t : yt >0,y ¢ C}. Further, if ¢' is an arbitrary compact sub-
cone of 0(C) there exists a 8§ = 8§(C') > 0 depending only on C' such that (3) holds
for all y € ¢' and all t e C¥.

LEMMA 2. Let C be an open connected cone. We have
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(Tox(t) %) e 1P for all p , 1 <p<w, (4)

o(c) _

as a function of t € R" for arbitrary z € T R™ + i 0(C), where IC*(t)

denotes the characteristic function of C¥* .

o(c)

PROOF. Let z = x+iy € T Using Lemma 1 we have

[Tox(t) %)= Toa(t) e¥® < Toalt) exp(-8]y]]t]) (5)

for some § = Gy > 0, and (5) holds for all t € R" since Ic*(t) =0ift ¢c*.
(5) proves (4) for p = o . Now let 1 < p <« . Using (5), [4, p. 39, Theorem

32], and integration by parts (n-1) times, we have

I |Tox(t) el 7E|P at < J exp(-6p|y||t]) at =

n n

= Qn J: 1 exp(-6p|y|r) ar = Qn (n-1)! (Sply|)™"

where £ is the volume of the unit sphere in R" . (6) proves (L) for 1 < p < =

For any open connected cone C the Cauchy kernel corresponding to TO(C) ({5,
p. 201] or [1, p. 223, (61)]) is
K(z-t) =J exp(i(z-t)n) an , z € TO(C) ,te R
o*
LEMMA 3. Let C be an open connected cone. K(z-t) is an analytic function
of z € TO(C) for fixed t € R". We have
[K(z-t)| <@ (n-1)1 67 [y|™, 2 = xriy e ©0C) L ®, (1)

where Qn is the volume of the unit sphere in R" and § = (Sy > 0 is the number of

(3)5 and for 1 < p < 2, (1/p) + (1/q) = 1, we have
[ K(z=t)]] . < (Qn(n—l)!)l/p (pcS)_m/p Iyl'n/p , 2 = x+iy € TO(C) s (8)
L

where the L2 norm is with respect to the variable t € IRn. Further, if ¢' is an

]
arbitrary compact subcone of 0(C) then (7) and (8) hold for z = x+iy € C ana



578 R. C. CARMICHAEL AND E. K. HAYASHI

t € R" with & depending only on C' € 0(C) and not on y € C' € 0(C).

0(C) for rixed t € B

PROOF. The fact that K(z-t) is analytic in z € T
follows by [1, p. 223]. (7) follows by the analysis of (6) for p = 1. For
1<p<2and (1/p) + (1/q) = 1, K(z-t) = ‘{‘1[10*(n) et s t] in the LY sense
as noted in [5, p. 202, proof of Theorem 1]; hence by the Parseval inequality

||K(z-t)HLq5 ]]IC*(H) eiznlle ,z € 70(C) (9)

Inequality (8) now follows from (9) and a computation as in (6) for 1 < p < 2. If
C' is an arbitrary compact subcone of 0(C) we use the second part of Lemma 1 to
obtain (5) and (6) for z € TC' , C'e< 0(C), where § now depends only on C' & 0(C)
and not on y € C' € 0(C). This fact and the above analysis yields (7) and (8)
holding for z = x+iy € TC' with 8§ depending only on C' e 0(C).

The result [1, p. 223, (62)] is a special case of Lemma 3 for p = 2.

We now obtain our result which adds information to [1, p. 227, Corollary]
and hence to the analytic functions considered in [1, sections 25.3-25.4]. First
note & misprint in the statement of [1, p. 227, Corollary); "equality (63)" in
[1, p. 227, line 2 of the Corollary] should read "inequality (64)".

THEOREM. Let C be an open connected cone. Let f(z) be analytic in TC and
satisfy (1). Then f(z) has an analytic extension F(z) € HQ(TO(C)) to TO(C) such
that for any compact subcone C'e 0(C)

l-n/2 , c'

|F(z)] < M(c") ||n]] 5 ly z = xtiy € T (10)
L

where M(C') is a constant which depends at most on C' e« 0(C) and h € 12 is the L°
boundary value of F(x+iy) as y - 0, y € 0(C). Further,

sup |12Geriy)|] , = swp  |IFGean) ], (1)
yeC L yeo(c) L

0.

and if O(C) contains an entire straight line then F(z)

PROOF. From [1, pp. 225-226] we have the existence of a function g € i
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with support in C* almost everywhere such that

£(z) = I gt) % at , z e 10, (12)
n

R
and the Fourier-Laplace integral on the right of (12) is well defined because of
the properties of g(t) and (4). Now put

o(c) (13)

F(z) = J glt) %t at , z e
]Rn

The fact that F(z) is analytic in TO(C)

follows as a special case of [6, Theorem

2.1]. Because of (L) and the properties on g(t), we have that (g(t) exp(-yt)) €

Ll N L2 as a function of t € R" for y € 0(C); hence the integral on the right of
(13) can be interpreted to be the 12 Fourier transform of (g(t) exp(-yt)),

y € 0(C). The Parseval equality and the fact that the support of g is in c*

almost everywhere now yield

Flxriy)|] , = lett) Y5, < Ilell 5 » (14)
e ], = Hate) ¥, < el

and we conclude that F(z) € H2(TO(C)). (This fact also follows by [3, p. 101,

Theorem 3.1].) We now apply the proof of [1, p. 227, Bochner's formula] or [3, p.

103, Theorem 3.6] to obtain the existence of a function h € L2 which is the 12

Fourier transform of g and is the 12 boundary value of F(x+iy) as y = 0, y € 0(C),

such that

o(c) .

F(z) = (em)™® I h(t) K(z-t) at, z € T (15)
n

R

Using (15), the HOlder inequality, and the estimate (8) for p = 2 valid for

1
z et , C' being an arbitrary compact subcone of 0(C), we have

F(z)| < (2m)™ ||n | 1K(z-t)]]
IF(z)] < [ IIL2 z 2

< ™ [[nl] , @ (-1)nY2 (26)7/2 |y /2
L

for z = x+iy € oC which proves (10) with M(c') = ((em)™® (Qn (n—l)!)l/2 (26)_n/2)



580 R. D. CARMICHAEL AND E. K. HAYASHI

depending only on C' € 0(C) since § does. The proof of [3, p. 93, Corollary 2.k]
now yields (11). If O(C) contains an entire straight line then F(z) = O because
of [1, p. 222, Lemma 1] and the fact that the support of g(t) is in C* almost
everywhere. The proof is complete.

Since any H2(TC) function satisfies (12) with g € 12 having support in C¥
almost everywhere ([6, Corollary 4.1] or [3, p. 101, Theorem 3.1]) and hence
satisfies (15) for z € TC and some h € 12 by the proof of [1, p. 227, (72)], the
proof of our Theorem shows that any H2(TC) function satisfies (10). As another
consequence of the proof of our Theorem, any function f(z) which is analytic in
mC and satisfies (1), i.e. [1, p. 224, (6k4)], has the representation (12) and
hence is an H2(TC) function because of analysis as in (14). Thus the analytic
functions considered by Vladimirov in [1, sections 25.3-25.4] are exactly the
H2(TC) functions. The statement made in [1, p. 227, lines 4-5] that (2) is a
more restrictive condition than (1) is thus not correct in the sense that both
(1) and (2) characterize exactly the same space, the Hardy ' space corresponding
to tubes TC

However, the growth (1) of Vladimirov has suggested to us a way to define
analytic functions in tubes which do generalize the Hardy spaces. The definitions
of these new spaces and our representations and analysis concerning them will
appear in [6].
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