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ABSTRACT. Let C(X,G) denote the group of continuous functions from a topological
space X into a topological group G with the pointwise multiplication and the
compact-open topology. We show that there is a natural topology on the collection
of normal subgroups A(X) of C(X,G) of the Mp = {f ¢ C(X,G): f(p) = e} which is
analogous to the hull-kernel topology on the commutative Banach algegra C(X) of
all continuous real or complex-valued functions on X. We also investigate homo-
morphisms between groups C(X,G) and C(Y,G).
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1. INTRODUCTION AND NOTATION.

Suppose X is a compact topological space and suppose C(X) is the algebra of
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all continuous real or complex-valued functions on X with the usual pointwise
operations and the supremum norm. Then C(X) is a regular commutative Banach
algebra with identity and X is homeomorphic to the maximal ideal space A(C(X)) of
the algebra C(X), where A(C(X)) is endowed with the Gel'fand topology which coin-
cides with the hull-kernel topology since C(X) is regular, [3]. If X is a topo-
logical space and G is a topological group, let C(X,G) be the topological group

of all continuous functions from X into G under pointwise multiplication and the
compact-open topology. In Section 2 of this paper, we study spaces of normal sub-
groups of C(X,G). There is a natural topology, analogous to the hull-kernel topo-
logy in Banach algebra, for the collection of normal subgroups of the form
Mp = Mp(X,G) = {f ¢e C(X,G): £(p) = e}, where e is the identity element of G;

the resulting topological space will be denoted by A(X). We show that, with some
mild restriction on X and G, X is homeomorphic to A(X), and that A(X*) is the one-
point compactification of A(X), where X* is the one-point compactification of the
locally compact space X. Some theorems on homomorphisms and extension of homomor-
phisms in C(X,G) are considered in Section 3. We also prove a correct version of
a theorem originally stated in [7, theorem 8].
All spaces considered in this paper are assumed to be Hausdorff unless speci-

fied. For topological spaces X and Y, the function space F ¢ C(X,Y) is under-
stood to be endowed with the compact-open topology whenever it is referred to

topologically. IO(X,G), or simply I if no confusion should occur, will denote

0
the identity element of the group C(X,G).

2. THE STRUCTURE SPACES.

For a topological space X and a topological group G, let I = C(X,6). If
X is compact and G is a Lie group, then I' and Mp, P € X, are in general £2 -
manifolds (c.f. [1]). It is easy to see that M is locally contractible at I,

where a € X, if X is a locally compact group locally contractible at a, and that
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every Mp, P € X, is n-simple for every positive integer n if X is a locally com~
pact contractible space. It is also easy to see that the topological group T is
a group with equal left and right uniformities if so is the group G, and that, if
G is the projective limit of the inverse system of topological groups

{(G_, ch): a, B € A}, then MP is the projective limit of the inverse system

a

{(MP(X,GQ), fga): a, B € A}, where fgu(f) =f_ o f for every f € MP(X,G).

Ba

Throughout this paper the spaces X and G will be subject to the following
condition.

DEFINITION 1 [6]1. A pair (X,G) of a topological space X and a topological
group G is called an S-pair if for each closed subset A of X and x ¢ A, there
exists £ € T such that £(x) # e and Z(f) = {x: £(x) = e} 5 A.

it is clear that (X,G) is an S-pair if X is completely regular and G is path
connected or if X is zero-dimensional. It is also clear that X is completely
regular if (X,G) is an S-pair, and that ( nA?a, ﬂAGa) is also an S-pair whenever
(Xu’Ga) is an S-pair for each a € A. Magiil caliid a space X a V-space, [4], if
for points p, q, x, and y of X, where p # q, there exists a continuous function
f of X into itself such that f(p) = x and f(q) = y, and has shown that every
completely regular path connected space and every zero-dimensional space is a V-
space. It is easy to see that ( 7 Xa, G) is an S-pair if each (Xa,G), a € A, is
is an S-pair and if G is a V—spaZ:? If G is a topological group such that (G,G)
is an S-pair, G may not be a V-space. For example, let G1 be the additive group
of real numbers with the usual topology and let 62 be any non-trivial finite group
with the discrete topology, then (G1 X G2, Gl X GZ) is an S—pair since (Gl’Gl) and
(G2,G2) are S-pairs. Since the topological group G1 x G2 is not connected with
1° Gl x G2 is not a V-space as it follows
from [4, Theorem 3.5]. It is pointed out in [7] that X is hemicompact and G is

the identity component isomorphic to G

metrizable if (X,G) is an S-pair, G is a V-space, and T is first countable.
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It is well-known (c.f. [2]) that, for every topological space X, there
exists a completely regular space Y such that C(Y) is (algebraically) isomorphic
to C(X), where C(Z) is the ring of continuous real-valued function on the space Z.

Using the similar argument mutatis mutandis as used in the construction of the

space Y, it is a straightforward to see that, for every topological space X and a
topological group G, there is a completely regular space YG such that C(YG,G) is
continuously isomorphic to C(X,G), and that, in the case G is path connected,
(YG,G) is an S-pair and the associated space YG is independent of the group G
within the category of path connected topological groups. The latter means that

YG = YG whenever G1 and G2 are path connected groups. It follows from the con-
1 2

struction of the space YG that X = YG if (X,G) is an S-pair.

Because of the remarks just made above, we shall now assume that (X,G) is an
S-pair.

For a collection Z of normal subgroups of T = C(X,G), we define "*" as
follows: If Uc ) and U # ¢, let Uk = {M e ): M > nU}, let ¢* = ¢.

THEQREM 1. "*" is a closure operator on Z if and only if whenever M ¢ E

and M > M1 n Mz, where M1 and M, are intersections of some subsets of z, then

2

either M > Ml of M > MZ’
PROOF : It is clear that U* > U, (U*)* = U*, ¢* = ¢, and that

U* y V¥ ¢ (U u V)* for subsets U and V of X. Hence "*" is a closure operator if

and only if U* y V¥ > (U u V)* for subsets U and V of Z. Now if M1 = nU, and

M

, = AV, then WnWv)*={Me): Mo>M

1 0 Mz}. Hence we have the theorem.
DEFINITION 2. If "*" is a closure operator on Z, we shall refer the result-

ing topology, not necessarily Hausdorff, on z as the S-topology, and the resulting

space will be referred to as a G-structure space, or simply structure space, of

the space X.

COROLLARY: If ] admits the S-topology, so is every subset of }.
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REMARK 2. If G is path connected, we may speak of structure spaces for the
space X without referring to the group since C(X,G) and C(X,R) are isomorphic in
this case.

LEMMA 3. If a collection of normal subgroup z of T admits the S-topology,
then a subset A of Z is closed if and only if there exists a normal subgroup
Mo of T which is the intersection of some subset of 2 such that
A={Me]: M>M}. Infact, M) = nA.

PROOF: Suppose AcC E is closed, then A = A = {M ¢ Z: M>nA = Mo}.

Conversely, suppose that there exists a normal subgroup Mo of T, where
My = nU for some U < }, such that A={Me]: MDMO}. Then
A={MeJ: M>nA} =A. Hence A is closed.

THEOREM 4. 'If a collection of normal subgroups X of T admits the S-topology,
then Z is Hausdorff if and only if for Ml’ M2 € z, Ml # M2, there are Il and IZ’
where I, = Uy, I, = nU, and U, U, < Y, such that M 21, M1, M 51,

M) # I, and I, n I, =n].

PROOF: Suppose that Z is Hausdorff, and let Ml, M2 € Z, M1 # MZ' Thus there

are disjoint open sets U1 and U2 in X such that Ml c Ul’ and M2 c UZ' If A1 =

Z - U2, A2 = Z - Ul’ then A1 and A2 are closed and Mi € Al’ M2 € A2. Using Lemma
3, we have A, = {M e J: M>onA}, 1i=1,2. If we let I, =nA;, 1=1,2, then
M 21, M >1,,M #I,,M, 31 and I, n I, = ny.

Conversely, assume that the stated property holds, and let Ml, M2 € X such
that Ml ¢ MZ' Then there are subsets Ul and U2 of Z such that if Ii = nUi,
i=1,2, M >1,,M, 51, #I,, M #1L,andI n I, = n}. Let B, =

i are closed by Lemma 3, M1 € Bl, M2 € BZ’

M ¢Byand M, ¢ B). If weletV,=]-B,V, =] -B,, then M ¢V, M, € V,,

and Vl n V2 = ¢. To see that V1 n V2 = ¢, it suffices to show that if M ¢ Z,

then either M ¢ B, or M e B). Now M ¢ ] implies M > n J= I, n I,. This means

Me]l: M> I,}, i =1,2. Then B
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that either M 2 Il or M o 12 since Z admits the S-topology. Hence M e Bl or

Me BZ' This completes the proof.
If we denote by A(X) the collection of all normal subgroups of I' of the form
Mp = {f ¢ C(X,G): f(p) = e}, p € X, then the following theorem states that A(X)
admits the S-topology and that the S-topology is Hausdorff if (X,G) is an S-pair.
THEOREM 5. A(X) admits the Hausdorff S-topology.

1

O2 ={q € X: Mq e V}. It is, by Theorem 1, sufficient to show that, if

PROOF: Let U and V be subsets of A(X), and let O, ={P € X: Mp € U} and

M 2(n M)n (n ), then either M o n M and M > n . Suppose other-
q pe0, P keO e pe0, P 9  ke0
1 2 Pl 2
wise, then there exist f e n M - M and g € . n Mk - M . This implies that
peO; P q keOz q

q¢ 51 and q ¢ 52. For if q € 0., then there is a net {qa} in 0, such that q -gq.

1 1
Then f(q ) > £(q), and hence f(q) = e since £f(q ) = e for each a. Similarly,

q ¢ 62. Hence q ¢ 0l U O2 . But (X,G) is an S=pair, let h € T such that
0, u 0, c Z(h) but h(q) # e. This would show that he (n M) n (n ) but

12 4 pe0; P keOZMk
h ¢ M, a contradiction. Hence either M o (n_ M) or M > (n and A(X
Q’ q (peol P q keOzM'k) ’ )

admits the S-topology.
Next to show that the S-topology is Hausdorff. Let Mp, Mq € A(X), where

P # q. Since X is T let O, and 02 be open sets in X such that P ¢ 01, qeO

2? 1 2
and 0l n 02 =¢. If C2 =X - 01 and C1 =X - 02, then p € Cl and q € C2' If
Il =k2C1 Mk and 12 =k202 Mk, then Il n 12 = nA(X) since C1 u C2 = X, Mp > Il’ and

Mq > 12. To see that Mp F I2

F(C,) = e but f(p) # e. Thus f € n but f ¢ M . This shows that M 4 I_.
2 keC, 2 P 2

Similarly, we have Mq ? Il. This completes the proof that A(X) is T2, by

note that p ¢ CZ’ hence there exists f € I' such that

Theorem 4.
Note that the S-topology defined above for A(X) is analogous to the hull-~
kernel topology, which coincides with the Gel'fand topology, on the maximal ideal

space of the commutative Banach algebra C(X).



CERTAIN GROUPS OF FUNCTIONS 497

For each a ¢ I, let Aa be a closed set of a structure space Z. Then, by
Lemma 3, there exists a normal subgroup Mu of T which is the intersection of some

subset of ) such that A = Me): M> Md}’ If we denoted by [ v }%] the normal
ae

subgroup of T generated by u M&’ then we have the following lemma whose proof is
ae€
straightforward and hence omitted.

LEMMA 6. nA={Me): Mo [ uM}
ael @ ael

THEOREM 7. A structure space z of X is compact if and only if every collec-

tion of normal subgroups {Na}ae of T, each of which is the intersection of some

I
subset of z, such that [ UINa] ¢ M for each M ¢ z has a finite subcollection.
ae

n

{N , N , ..., N }suchthat [ U N ] ¢ M for each M ¢ z.
o a a o,
1 2 n i=1 i

PROOF: Suppose z is compact, and let {Na}aeI be a collection of normal sub-
groups of I'y, each of which is the intersection of some subset of Z, such that
[ uNJ¢Mfor eachMe J. If, for eacha ¢ I, letAa={Mez: M >N}, then

ael
A, is closed in ), Lenma 3, and n A = {M ¢ J:M>o[u Na]} = ¢. Hence, by the

ael ¢ ael ",
compactness of Z, there exist Qps Qgs eees @ such that n Ah =¢; 1i.e., there
i=1 7i n
exist a,, a,, ..., a_ such that {M e J: M> [ 0 N 1} = ¢. Hence [ UN J ¢ M
12 n i=1 %4 1=1 %4

for each M ¢ 2.

Conversely, suppose that z has the stated property, and let {Ad}ael be a
collection of closed sets with the finite intersection property, where Aa =
{Me z: M> Na} and N is the intersection of some subset of z. Suppose that

n A =¢. Then {M e z: Mo [u Na] = ¢, hence [ u Na] ¢ M for each M ¢ Z.
ael ael ael

n
Thus, by the hypothesis, there exist a., a@,, ..., & such that [ u N 1 ¢ M for
1 2 n 1=1 %4
n
each M € z. This would imply that n Ad = ¢, a contradiction. Hence z is
i=1 i
compact.

COROLLARY. A structure space z of X is compact if every normal subgroup N

of T not contained in any element of z contains a finitely generated normal sub-
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group of N not contained in any element of X.

PROOF: Assume that the stated property holds in Z, and let {Na}aeI be a
collection of normal subgroups of T', each of which is the intersection of some
subset of Z, such that [ UINa] ¢ M for every M in z. Let N = [ UINa]. Then
N ¢ M for every M in z, i;us N contains a finitely generated nog;al subgroup B
such that B ¢ M for each M ¢ z. Let B = [aal, aaz, cesy aan], where a“1 € Nai,
i=1, 2, ..., n. Then [ 3 N ] ¢ M for every M in Z. Hence z is compact by

i=1 %
Theorem 7.

We shall call a normal subgroup N of T free if there is no p € X such that
f(p) = e for each f € N.

COROLLARY. A(X) is compact if every free normal subgroup N of I' contains
a finitely generated free normal subgroup.

THEOREM 8. The mapping y: X + A(X) defined by y(x) = Mx, x e X, is a
homeomorphism.

PROOF: Clearly, ¢y is one-to-one and onto.

For the continuity of ¢y, let A ¢ A(X) be closed. Then there exists a normal
subgroup M, of T such that A = {M_e A(X): M_>M}. We shall see that v 1)
is closed. For this purpose, let {xa} be a net in w—l(A) converging to x € X.
Then M&aa MO for each a. If M& F) MO’ there exists f ¢ MO
imply that £(x) # e, a contradiction since f(xa) + f(x) and £(x) = e for each a.

- Mx which would

Next to show that y is a closed map. Let C be closed in X, and let

M. = nM. We claim that y(C) = {M_ € A(X): M_> M}, which would imply that
0 xeC ¥ X X 0
P(C) is closed. It is clear that Y(C) c {Mx € AX): M_> Mo}. Now let

Mx £ {Mx e A(X): Mx > MO}. Then M.x oM Suppose x ¢ C, then there exists

0
f € C(X,G) such that £(C) = e but f(x) # .e. Hence f € M0 but f ¢ Mx’ a contra-
diction. Thus x € C, and we have Mx e y(C).

If A is a commutative Banach algebra without identity, and if A(e) is the

algebra obtained by adjoining an identity to A, then the maximal ideal space
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A(A(e)), with the Gel'fand topology, is the one-point compactification of A(A).
Using the previous results, we can also state the following theorem whose proof
is now trivial.

THEOREM 9. If X is a locally compact space and X* its one-point compactifi-
cation, then A(X*) is the one-point compactification of A(X), and A(X*) =
AX) u {Mm}, where M_ = {f € C(X*,G): f(=) = e}.

3.  HOMOMORPHISMS OF C(X,G).

In this section, we shall study homomorphisms of the group C(X,G) into the
group C(Y,G) which leads us to have another version of a theorem originally
announced in [7]. We shall also, at the ‘end of the section, consider extensions
of homomorphisms of the group C(X,G). All pairs (Z,G) are again assumed to be
S-pairs.

DEFINITION 3. (1) A homomorphism ¢ of the group C(Y,G) into the grouwp
C(X,G) is said to be a constant-preserving if ¢ maps every constant function on
Y into the corresponding constant function on X.

(2) A homomorphism ¢ of the group C(Y,G) into the group C(X,G) which has
the property that ¢-1(A(X)) c A(Y) is called an F-homomorphism.

It is easy to construct an example of a homomorphism ¢: C(Y,G) -+ C(X,G)
which is an F-homomorphism but is not constant-preserving. The following example
[5], shows that the converse does not hold either.

EXAMPLE. Let Y = [0,1] be the closed unit interval, and let X =
([-1,11 x {0}) u ({0} x (0,1]) considered as a subspace of Rz. For each

f ¢ C(Y,R), define ¢ (f) ¢ C(X,R) by

$(5)(£,0) = £ (£ + 1)), te [-1,1]

$(5)(0,8) = £G (s + 1)) + £3), s € [0,1]

Then ¢ is a constant-preserving isomorphism of C(Y,R) onto C(X,R). If g € C(X,R),
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then

g(4y-1,0) y € [0,%]
s e () =
¢(0,2y-1) + g(1,0) - £(0,0), y € [=,1]
Now choose g € C(X,R) such that Z(g) = {(0,%)} and that g(1,0) - g(0,0) > 0,

then g € M(O 1)’ but Z(¢—l(g)) = ¢. Hence ¢ is not an F-homomorphism.
’

THEOREM 10. Suppose that ¢: C(Y,G) - C(X,G) is a continuous constant-pre-
serving F-homomorphism of C(Y,G) into C(X,G). Then

(1) ¢ induces a one-to-one continuous map of A(X) into A(Y), and

(2) ¢ induces a continuous map j of X into Y such that j(x) = y if and only
if ¢(g) (x) = g(y) for each g € C(Y,G).

PROOF. (1) for each x € X, let hx: C(X,G) - G be the evaluation map de-
fined by hx(f) = f(x), f € C(X,G), and let Mx = kerhx. Define h(x): C(Y,G) - G
by h(x) = hx o ¢, x € X. Then ker h(x) = ¢-1(Mx), hence ker h(x) = My for some
y € Y. Such an y is unique and we have h(x) = hy. Now we define a mapping
d: (X) » A(Y) by ®(MX) = My'

Clearly ¢ is one-to-one. For the continuity of ¢, let A =

{My e A(Y): My > Ml}, where Ml is the intersection of some subset U of A(Y), be

4 closed set in A(Y). We claim that Q-l(A) = {Mx e A(X): Mx > ¢(Ml)} and that

¢(M1) is the intersection of the subset ¢ (U) of A(X). In fact, let Mx > ¢(Ml).

1

-1 -1
Then ¢ (MX) > M. If ¢(Mx) = My, My = ker hy = ker (hx © ¢) = ¢ (Mx > M,

-1 (A). Then

hence My e A, thus Mx = Q-l(My) € ¢—1(A). Conversely, let Mz € d
@(MZ) € A, If @(Mz) = My € A for some y ¢ Y, then Hy = hz o ¢, hence ¢(M1) c Mz.
It is easy to see that ¢(Ml) is the intersection of the subset ¢ (U) of A(X).
Therefore ¢‘1(A) is closed in A(X), and ¢ is continuous.

(2) Let the mapping j: X + Y be defined by j = w;l °d o Yx, where
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wz: Z > A(Z) is the mapping of Theorem 8. Then clearly j is continuous and
j(x) =y if and only if @(MX) = My' To see that j(x) = y if and only if

¢ (g) (x) = g(y) for every g € C(Y,G), let j(x) = y. Then Q(Mx) = My. Thus
ker(hx o ¢) = My. Let g € C(Y,G). If g ¢ My, hx o ¢(g) = e, and we have
o(g)(x) =g(y). If g¢ My, there exists c € G such that g € gMy, where ¢ is the

constant mapping of X into c, hence g = ck for some k € My. Now hx o ¢(g) =

hx o ¢(ck) = hx(c ¢ (k)) cp (k) (x) = ¢, while g(y) = ck(y) = c. Hence
¢ (g) (x) = g(y) for each g € C(Y,G). Conversely, if ¢(g)(x) = g(y) for each
g € C(Y,G), then, for g € C(Y,G), hx o ¢(g) = ¢(g)(x) = g(y) = hy(g). Thus
¢(Mx) = My, and we have that j(x) = y.
REMARK: It is easy to see that, if the mapping ¢ in Theorem 10 is an onto

map, then ¢ is an embedding.

THEOREM 11. A continuous homomorphism ¢ of C(Y,G) into C(X,G) is a con~
stant-preserving F-homomorphism if and only if there exists f € C(X,Y) such that
¢(k) = k o £ for every k € C(Y,G).

PROOF: It is clear that a homomorphism ¢ of the form ¢(k) = k o f for every
k € C(Y,G) is a constant-preserving F-homomorphism. Conversely, if ¢ is a con-
stant-preserving F-homomorphism, and if j is the continuous map of X into Y as
defined in Theorem 10, then, for each k € C(Y,G), ¢(k)(x) = k(y) = k o j(x),
where j(x) = y, Hence ¢(k) = k o j for each k € C(Y,G).

COROLLARY. A homomorphism ¢ of C(Y,G) into X(X,G) is a constant-preserving
F-homomorphism if and only if there exists f ¢ C(X,Y) such that ¢(k) = k o f for
every k € C(Y,G).

PROOF: Note that the group topologies for C(Y,G) and C(X,G) are not rele-
vant in the proof of Theorem 10. Hence take discrete topologies for the groups
C(Y,G) and C(X,G), then apply the proof of Theorem 11.

As a consequence of the discussions made above, we cannow state a correct
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version of the theorem originally stated in [7, Theorem 8] in the following.

THEOREM 12. 1If there exists an isomorphism ¢ between groups C(Y,G) and
C(X,G) which is constant-preserving such that both ¢ and ¢'1 are F-homomorphisms,
then X and Y are homeomorphic.

PROOF: It is clear that ¢-l is also constant-preserving if ¢ is. Applying
the above corollary to ¢ and ¢—1, there exist functions j € C(X,Y) and & € C(Y,X)
such that ¢(k) = k o j for each k € C(Y,G) and ¢—l(k) =k o & for each k € C(X,G).
Consequently, we have that £ o j(x) = x and j o 2(y) =y for x ¢ Xand y € Y.

To see this suppose that there exists x € X such that 2 ° j(x) # x, then we have
f € C(X,G) such that £(2 o j(x)) # £(x) or f o & o j(x) # £(x). Hence

(¢—1(f) o j)(x) # £(x), -and thus ¢(¢-1(f))(x) # f(x) which leads to f£(x) # f(x).
Similarly, j o 2(y) = y. Hence j is a homeomorphism of X onto Y.

For topological spaces X and Y, it is clear that the space C(X,Y) may be
embedded into the space C(X x Z,Y) as a retract for any space Z, and that every
homomorphism of the topological group C(X,G) into a topological group L may be
extended to a homomorphism of the topological group C(X x Y,G) into L for any
topological group L. We shall conclude this paper with the following result
concerning an extension of F-homomorphisms.

THEOREM 13. Suppose A is a closed subset of X. Then every constant-pre-
serving F-homomorphism h of the topological group C(G,G) into the topological
group C(A,G) may be extended to a homomorphism H of the same kind from the topo-
logical group C(G,G) into the topological group C(X,G) such that I o H = h if
every continuous function f: A -+ G may be continuously extended to all of X,
where I: C(X,G) - C(A,G) be the map defined by I(f) = £ o i for f ¢ C(X,G),

i being the inclusion map of A into X.
PROOF: For necessity, let f: A G be any continuous function, and let

f*: C(G,G) C(A,G) be the natural homomorphism induced by f, namely f*(k) =
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k o f for each k € C(G,G). Then f* is a constant-preserving F-homomorphism, by
Theorem 11. Hence there exists a constant-preserving F-homomorphism H of the
topological group C(G,G) into C(X,G) such that I o H = f*, Let 6 € C(X,G) such
that H(k) = k o 0 for every k € C(G,G). If id denotes the identity map of G into
itself, then, for a € A, 6(a) = (id o B)(a) = H(id)(a) = H(id)(i(a)) = H(id)

o i(a) - I(H(id))(a) = (I o H)(ia)(a) = f*(id)(a) (id o f)(a) = f(a). Hence

6 is an extension of f to all of X.

For sufficiency, assume that every continuous function f: A - G may be
extended continuously to all of X, and let h: C(G,G) >~ C(A,G) be a constant-pre-
serving homomorphism of the topological group C(G,G) into the topological group
C(A,G). Then there exists f ¢ C(A,G) such that h(k) = k o £ for every k € C(G,G).
If we denote by f the extension of % to all of X, define a functiom H:
¢(G,G) + C(X,G) by H(k) = k o  for each k € C(G,G). Then H is a constant-pre-
serving F-homomorphism and I o H = h. This completes the proof.

In particular, if X is a normal space, and A a closed subset of X, then
every constant-preserving F-homomorphism h of the topological group C(R,R) into
the topological group C(Z,R) may be extended to a homomorphism H of the same kind

from the topological group C(R,R) into the topological group C(X,G) such that
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