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ABSTRACT. Let C(X,G) denote the group of continuous functions from a topological

space X into a topological group G with the pointwise multiplication and the

compact-open topology. We show that there is a natural topology on the collection

of normal subgroups A(X) of C(X,G) of the M {f C(X,G): f(p) e} which is
P

analogous to the hull-kernel topology on the commutative Banach algegra C(X) of

all continuous real or complex-valued functions on X. We also investigate homo-

morphisms between groups C(X,G) and C(Y,G).
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i. INTRODUCTION AND NOTATION.

Suppose X is a compact topological space and suppose C(X) is the algebra of
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all continuous real or complex-valued functions on X with the usual pointwise

operations and the supremum norm. Then C(X) is a regular commutative Banach

algebra with identity and X is homeomorphic to the maximal ideal space A(C(X)) of

the algebra C(X), where A(C(X)) is endowed with the Gel’fand topology which coin-

cides with the hull-kernel topology since C(X) is regular, [3]. If X is a topo-

logical space and G is a topological group, let C(X,G) be the topological group

of all continuous functions from X into G under pointwise multiplication and the

compact-open topology. In Section 2 of this paper, we study spaces of normal sub-

groups of C(X,G). There is a natural topology, analogous to the hull-kernel topo-

fogy in Banach algebra, for the collection of normal subgroups of the form

M M (X,G) {f e C(X,G): f(p) e} where e is the identity element of G;
P P

the resulting topological space will be denoted by A(X). We show that, with some

mild restriction on X and G, X is homeomorphic to A(X), and that A(X*) is the one-

point compactification of A(X), where X* is the one-point compactification of the

locally compact space X. Some theorems on homomorphisms and extension of homomor-

phisms in C(X,G) are considered in Section 3. We also prove a correct version of

a theorem originally stated in [7, theorem 8].

All spaces considered in this paper are assumed to be Hausdorff unless speci-

fled. For topological spaces X and Y, the function space F = C(X,Y) is under-

stood to be endowed with the compact-open topology whenever it is referred to

topologically. 10(X,G) or simply I
0

if no confusion should occur, will denote

the identity element of the group C(X,G).

2. THE STRUCTURE SPACES.

For a topological space X and a topolog.ical group G, let P C(X,G). If

X is compact and G is a Lie group, then r and M p X, are in general 2P
manifolds (c.f. [i]). It is easy to see that M is locally contractible at I0,a

where a X, if X is a locally compact group locally contractible at a, and that
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every Mp, p X, is n-simple for every positive integer n if X is a locally com

pact contractible space. It is also easy to see that the topological group Y is

a group with equal left and right uniformities if so is the group G, and that, if

G is the projective limit of the inverse system of topological groups

{ (G, fss): , 8 A}, then M is the projective limit of the inverse system
P

{(M_(X,Gu) fopp ): 8 A} where fopp (f) f f for every f M (X,G).Bc p

Throughout this paper the spaces X and G will be subject to the following

condition.

DEFINITION i [6]. A pair (X,G) of a topological space X and a topological

group G is called an S-pair if for each closed subset A of X and x % A, there

exists f e F such that f(x) # e and Z(f) {x: f(x) e} n A.

It is clear that (X,G) is an S-pair if X is completely regular and G is path

connected or if X is zero-dimensional. It is also clear that X is completely

regular if (X,G) is an S-pair, and that X AGa is also an S-pair whenever
eA a

(X,Gu) is an S-pair for each u e A. Magill called a space X a V-space, [4], if

for points p, q, x, and y of X, where p # q, there exists a continuous function

f of X into itself such that f(p) x and f(q) = y, and has shown that every

completely regular path connected space and every zero-dimensional space is a V-

space. It is easy to see that X G) is an S-pair if each (Xa,G), a A, is
uA a

is an S-pair and if G is a V-space. If G is a topological group such that (G,G)

is an S-pair, G may not be a V-space. For example, let GI be the additive group

of real numbers with the usual topology and let G
2
be any non-trivial finite group

with the discrete topology, then (GI G2, GI
G2) is an S-pair since (GI,GI) and

(G2,G2) are S-pairs. Since the topological group GI G
2

is not connected with

the identity component isomorphic to GI, GI G
2

is not a V-space as it follows

from [4, Theorem 3.5]. It is pointed out in [7] that X is hemicompact and G is

metrlzable if (X,G) is an S-pair, G is a V-space, and F is first countable.
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It is well-known (c.f. [2]) that, for every topological space X, there

exists a completely regular space Y such that C(Y) is (algebraically) isomorphic

to C(X), where C(Z) is the ring of continuous real-valued function on the space Z.

Using the similar argument mutatis mutandis as used in the construction of the

space Y, it is a straightforward to see that, for every topological space X and a

topological group G, there is a completely regular space YG such that C(YG,G) is

continuously isomorphic to C(X,G), and that, in the case G is path connected,

(YG,G) is an S-pair and the associated space YG is independent of the group G

within the category of path connected topological groups. The latter means that

YGI YG2 whenever GI and G
2
are path connected groups. It follows from the con-

struction of the space YG that X YG if (X,G) is an S-pair.

Because of the remarks Just made above, we shall now assume that (X,G) is an

S-pair.

For a collection . of normal subgroups of F C(X,G), we define "*" as

follows: If U c and U # , let U* {M : M = nU}, let * .
THEONEM i. "*" is a closure operator on if and only if whenever M I

and M = M1 n M2, where M1 and M
2
are intersections of some subsets of I, then

either M M
1

of M = M2.

PROOF: It is clear that U* U, (U*)* U*, * , and that

U* u V* c (U u V)* for subsets U and V of . Hence "*" is a closure operator if

and only if U* u V* = (U u V)* for subsets U and V of 7.. Now if sU, and

M2 sV, then (U n V)* {M I: M = M1 0 M2}. Hence we have the theorem.

DEFINITION 2. If "*" is a closure operator on I, we shall refer the result-

ing topology, not necessarily Hausdorff, on [ as the S-topology, and the resulting

space will be referred to as a G-structure space, or simply structure space, of

the space X.

COROLLKRY If [ admits the S-topology, so is every subset of .
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REMARK 2. If G is path connected, we may speak of structure spaces for the

space X without referring to the group since C(X,G) and C(X,R) are isomorphic in

this case.

LEMMA 3. If a collection of normal subgroup of r admits the S-topology,

then a subset A of is closed if and only if there exists a normal subgroup

M
0

of r which is the intersection of some subset of such that

A {M : M = M0}. In fact, M
0

hA.

PROOF: Suppose A= is closed, then A {M : M nA M0}.
Conversely, suppose that there exists a normal subgroup M0

of , where

M
0 0U for some U c , such that A={M : M M0}. Then

{M : M = hA} A. Hence A is closed.

THEOREM 4. If a collection of normal subgroups of r admits the S-topology,

then is Hausdorff if and only if for , M
2 I, M2, there are I

1
and 12,

where II nUl, 12 U
2
and Ul, U

2 = , such that MI Ii, M
2 12, MI 12,

M
2 Ii, and II 12 .

PROOF: Suppose that is Hausdorff, and let MI, M
2

, MI # M2. Thus there

are dlsoint open sets UI and U
2

in such that MI
c UI, and M

2

I U2, A
2 I Ul, then AI and A

2
are closed and AI, M

2
Am Using eemma

3, we have A
i

{M : M A.},I i 1,2. If we let I
i Ai, i 1,2, then

= II, M2 = 12 MI 12 M
2

II and II 12 nI.
Conversely, assume that the stated property holds, and let MI, M

2 such

that MI M2. Then there are subsets U
l

and U
2

of such that if I

i 1,2, M
l = II, M2 = 12, MI 12, M

2 Ii, and II 12 . Let B

{M : M ll}, i 1,2. Then B
i
are closed by Lmma 3, MI BI, M

2 B2,
B
2

and M
2

BI. If we let V
2 I BI, VI B2, then MI VI, M2 V2,

and V
1

V
2 . To see that V

1
n V

2
, it suffices to show that if M

then either M BI or M B2. Now M implies M = I
I 12 This means
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that either M = II
or M = 12 since [ admits the S-topology. Hence M BI or

M B2. This completes the proof.

If we denote by A(X) the collection of all normal subgroups of F of the form

M {f C(X,G): f(p) e}, p X, then the following theorem states that A(X)
P

admits the S-topology and that the S-topology is Hausdorff if (X,G) is an S-pair.

THEOREM 5. A(X) admits the Hausdorff S-topology.

PROOF: Let U and V be subsets of A(X) and let 01 {P X: M U} and
p

02 {q X: M V}. It is, by Theorem i, sufficient to show that, if
q

Mq (POlnM) n (k02)’ then either Mq pOlMp and Mq kO2. Suppose other-

wise, then there exist f n M M and g M This implies that
PO1 P q kO2 q

q i and q 2" For if q e i’ then there is a net {q} in OI such that q/q.

Then f(q / f(q), and hence f(q) e since f(q e for each s. Similarly,

Hence q 01 u 0
2

But (X,G) is an S=pair, let h F such that

Z(h) but h(q) e. This would show that h (POlnMp) n (kO2) but

contradiction. Hence either M Mp) or M (k )’ and A(X)
q P 01 q 02

admits the S-topology.

Next to show that the S-topology is Hausdorff. Let Mp, Mq A(X), where

p q. Since X is T2, let 01 and 02 be open sets in X such that P O1, q 02
and 01 02 . If C

2 X OI and CI X 02 then p CI and q C2. If

I
1

and 12 n , then I
1

I
2

A(X) since C
1

u C
2 X, Mp Ii, and

kCI kO2

Mq 12. To see that Mp 12 note that p C2, hence there exists f F such that

F(C2) e but f(p) e. Thus f but f M This shows that M 12kC2 P P

Similarly, we have M II. This completes the proof that A(X) is T2, by
q

Theorem 4.

Note that the S-topology defined above for A(X) is analogous to the hull-

kernel topology, which coincides with the Gel’fand topology, on the maximal ideal

space of the commutative Banach algebra C(X).
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For each I, let A be a closed set of a structure sace . Then, by

Lemma 3, there exists a normal subgroup M of F which is the intersection of some

subset of such that A {M E ; M M }. If we denoted by [ U M ] the normal

subgroup of I" generated by uIM, then we have the following 1 whose proof is

straightforward and hence omitted.

LEMMA 6. n A {M E [: M [ u M]}

THEOREM 7. A structure space I of X is compact if and only if every collec-

tion of normal subgroups {N}e_l of r, each of which is the intersection of some

subset of Z, such that [ u N ] M for each M Z has a finite subcollection.

n
{N N N such that [ u N ] M for each M [.
el 2 n i=l x

PROOF: Suppose [ is compact, and let {N } be a collection of normal sub-

groups of r, each of which is the intersection of some subset of , such that

u N ] M for each M [. If, for each e I, let A {M : M m N } then

A is closed in , Lemma 3, and 0 A M : M o N ) $. Hence, by h

compactness of Z, there exist i’ =2 such that n A @; i.e., there
n

i=l 1n n
ist Sl e2’ e such that {M [: M m u N ]} . Hence u N ] Mn

i=l

for ch M e [.

Conversely suppose that [ has the stated property and let {A be a
a sI

collection of closed sets with the finite intersection property, where A

{M [: M N and N is the intersection of some subset of [. Suppose that

A . Then {M [: M [ u N ] $, hence [ u N ] W M for each M
ael aI aeI u
Thus, by the hypothesis, there ist el’ 2’ such that [ u N ] W M for

n i=l aln
each M e [. This would imply tt A $, a contradiction. Hence [ is

compact.

COROLLARY. A structure space [ of X is compact if every normal subgroup N

of F not contained in any element of [ contains a finitely generated normal sub-
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group of N not contained in any element of ..
PROOF: Assume that the stated property holds in [, and let {N } be a

collection of normal subgroups of r, each of which is the intersection of some

subset of [ such that [ u N ] M for every M in 7.. Let N [ u N ]. Then

N M for every M in [, thus N contains a finitely generated normal subgroup B

such that B M for each M [. Let B [asl a
s

a ], where a N

n 2 Sn si si
i i, 2, n. Then [ u N ] M for every M in .. Hence . is compact by

i=I s.
1

Theorem 7.

We shall call a normal subgroup N of r free if there is no p X such that

f(p) e for each f N.

COROLLARY. A(X) is compact if every free normal subgroup N of F contains

a finitely generated free normal subgroup.

THEOREM 8. The mapping : X / A(X) defined by (x) Mx, x X, is a

homeomorphlsm.

PROOF: Clearly, is one-to-one and onto.

For the continuity of $, let A c A(X) be closed. Then there exists a normal

subgroup M0 of r such that A {Mx (X): Mx MO}. We shall see that q-l(A)
-1is closed. For this purpose, let {x } be a net in (A) converging to x X.

Then Mx M
0

for each s. If Mx M0, there exists f M
0 Mx which would

imply that f(x) # e, a contradiction since f(x / f(x) and f(x) e for each s.

Next to show that $ is a closed map. Let C be closed in X, and let

M
0

n Mx. We claim that $(C) {Mx A(X): Mx = M0}, which would imply that

(C) is closed. It is clear that (C) c {Mx A(X): Mx = MO}. Now let

Mx {Mx A(X): Mx = M0}. Then Mx = M0. Suppose x C, then there exists

f C(X,G) such that f(C) e but f(x) #.e. Hence f M
0
but f Mx, a contra-

diction. Thus x C, and we have M (C).
X

If A is a commutative Banach algebra without identity, and if A(e) is the

algebra obtained by adjoining an identity to A, then the maximal ideal space
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A(A(e)), with the Gel’ land topology, is the one-point compactification of A(A)

Using the previous results, we can also state the following theorem whose proof

is now trivial.

THEOREM 9. If X is a locally compact space and X* its one-point compactifi-

cation, then A(X*) is the one-point compactification of A(X), and A(X*)

A(X) D {M}, where M= {f C(X*,G): f(=) e}.

3. HOMOMORPHISMS OF C(X,G).

In this section, we shall study homomorphisms of the group C(X,G) into the

group C(Y,G) which leads us to have another version of a theorem originally

announced in [7]. We shall also, at theend of the section, consider extensions

of homomorphisms of the group C(X,G). All pairs (Z,G) are again assumed to be

S-pairs.

DEFINITION 3. (i) A homomorphism of the group C(Y,G) into the group

C(X,G) is said to be a constant-preserving if # maps every constant function on

Y into the corresponding constant function on X.

(2) A homomorphism of the group C(Y,G) into the group C(X,G) which has

-i
the property that (A(X)) c A(Y) is called an F-homomorphism.

It is easy to construct an example of a homomorphism #: C(Y,G) / C(X,G)

which is an F-homomorphism but is not constant-preservlng. The following example

[5], shows that the converse does not hold either.

EXAMPLE. Let Y [0,I] be the closed unit interval, and let X

([-i,i] x {0}) u ({0} (0,i]) considered as a subspace of R2. For each

f E C(Y,R), define (f) E C(X,R) by

1#(f)(t,0) f( (t + I)), t [-I,i]

(f)(0,s) f( (s + i)) + f(), s [0,i]

Then is a constant-preserving isomorphism of C(Y,R) onto C(X,R). If g e C(X,R),
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then

i
g(4y-l,0) y e [0,]

-i
(g) (Y)

1
g(0,2y-l) + g(l,0) g(0,0), y [,I]

Now choose g e C(X,R) such that Z(g) (0,1/2)} and that g(l,0) g(0,0) > 0,

then g e M
-I

(0,1/2)’ but Z( (g)) . Hence is not an F-homomorphism.

THEOREM I0. Suppose that : C(Y,G) / C(X,G) is a continuous constant-pre-

serving F-homomorphism of C(Y,G) into C(X,G). Then

(i) induces a one-to-one continuous map of A(X) into A(Y), and

(2) induces a continuous map j of X into Y such that j (x) y if and only

if (g)(x) g(y) for each g C(Y,G).

PROOF. (i) for each x e X, let hx: C(X,G) / G be the evaluation map de-

fined by hx(f) f(x), f C(X,G), and let M kerhx. Define h(x): C(Y,G) / G
X

-I
by h(x) hx , x X. Then ker h(x) (Mx), hence ker h(x) My for some

y e Y. Such an y is unique and we have h(x) hy. Now we define a mapping

(X) + A(Y) by (Mx) M
Y

Clearly is one-to-one. For the continuity of , let A

{M A(Y): M m MI}, where MI is the intersection of some subset U of A(y), be
Y Y

-iclosed set in A(Y). We claim that (A) {Mx A(X): Mx m (MI)} and that

(MI) is the intersection of the subset (U) of A(X). In fact, let Mx m (MI)"
Then -l(M--)x m MI" If (M__)x My M ker hy ker (hx ) -l(MxY

D M
1

-i -i -ihence My e A, thus Mx (My) e (A). Conversely, let Mz (A). Then

(M A. If (Mz) M e A for some y Y, then Hy hz hence (MI) Mz y z

It is easy to see that (MI) is the intersection of the subset (U) of A(X).

-i
Therefore (A) is closed in A(X), and is continuous.

-i(2) Let the mapping j: X / Y be defined by j y o x, where
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z: Z / A(Z) is the mapping of Theorem 8. Then clearly j is continuous and

j(x) y if and only if (Mx) M To see that j(x) y if and only if
Y

(g)(x) g(y) for every g E C(Y,G), let j(x) y. Then (Mx) My. Thus

ker(hx 4) My. Let g C(Y,G). If g My, hx (g) e, and we have

#(g)(x) g(y). If g My, there exists c G such that g C_My, where c__ is the

constant mapping of X into c, hence g ck for some k My. Now hx #(g)

hx (c_k) hx(c__ #(k)) c(k)(x) c, while g(y) ck(y) c. Hence

#(g)(x) g(y) for each g E C(Y,G). Conversely, if (g)(x) g(y) for each

g C(Y,G), then, for g C(Y,G), hx (g) (g)(x) g(y) hy(g). Thus

(Mx) My, and we have that j(x) y.

REMARK: It is easy to see that, if the mapping in Theorem i0 is an onto

map, then # is an embedding.

THEOREM ii. A continuous homomorphism of C(Y,G) into C(X,G) is a con-

stant-preserving F-homomorphism if and only if there exists f C(X,Y) such that

(k) k f for every k C(Y,G).

PROOF: It is clear that a homomorphism of the form (k) k f for every

k e C(Y,G) is a constant-preserving F-homomorphism. Conversely, if is a con-

stant-preserving F-homomorphism, and if j is the continuous map of X into Y as

defined in Theorem i0, then, for each k C(Y,G), (k)(x) k(y) k j(x),

where j(x) y, Hence (k) k j for each k e C(Y,G).

COROLLARY. A homomorphism of C(Y,G) ifo X(X,G) is a constant-preserving

F-homomorphism if and only if there exists f C(X,Y) such that #(k) k f for

every k C(Y,G).

PROOF: Note that the group topologies for C(Y,G) and C(X,G) are not rele-

vant in the proof of Theorem i0. Hence take discrete topologies for the groups

C(Y,G) and C(X,G), then apply the proof of Theorem ii.

As a consequence of the discussions made above, we can now state a correct
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version of the theorem originally stated in [7, Theorem 8] in the following.

THEOREM 12. If there exists an isomorphism between groups C(Y,G) and

-I
C(X,G) which is constant-preserving such that both and # are F-homomorphisms,

then X and Y are homeomorphic.

-I
PROOF: It is clear that is also constant-preserving if is. Applying

-i
the above corollary to and there exist functions j C(X,Y) and C(Y,X)

-i
such that (k) k j for each k C(Y,G) and # (k) k for each k C(X,G).

Consequently, we have that j(x) x and j (y) y for x X and y Y.

To see this suppose that there exists x X such that % j(x) # x, then we have

f C(X,G) such that f( j(x)) # f(x) or f j(x) # f(x). Hence

-i -i
( (f) j)(x) # f(x), .and thus (# (f))(x) # f(x) which leads to f(x) # f(x).

Similarly, j (y) y. Hence j is a homeomorphism of X onto Y.

For topological spaces X and Y, it is clear that the space C(X,Y) may be

embedded into the space C(X x Z,Y) as a retract for any space Z, and that every

homomorphism of the topological group C(X,G) into a topological group L may be

extended to a homomorphism of the topological group C(X x Y,G) into L for any

topological group L. We shall conclude this paper with the following result

concerning an extension of F-homomorphisms.

THEOREM 13. Suppose A is a closed subset of X. Then every constant-pre-

serving F-homomorphism h of the topological group C(G,G) into the topological

group C(A,G) may be extended to a homomorphism H of the same kind from the topo-

logical group C(G,G) into the topological group C(X,G) such that I H h if

every continuous function f: A / G may be continuously extended to all of X,

where I: C(X,G) / C(A,G) be the map defined by l(f) f i for f C(X,G),

i being the inclusion map of A into X.

PROOF: For necessity, let f: A G be any continuous function, and let

f*: C(G,G) C(A,G) be the natural homomorphism induced by f, namely f*(k)
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k f for each k C(G,G). Then f* is a constant-preservlng F-homomorphlsm, by

Theorem ii. Hence there exists a constant-preservlng F-homomorphlsm H of the

topological group C(G,G) into C(X,G) such that I H f*. Let 8 C(X,G) such

that H(k) k @ for every k C(G,G). If i
d
denotes the identity map of G into

itself, then, for a A, 0(a) (i
d

0)(a) H(id)(a) H(id)(i(a)) H(id)
i(a) I(H(id))(a) (I S)(i)(a) f*(id)(a) (i

d
f)(a) f(a). Hence

8 is an extension of f to all of X.

For sufficiency, assume that every continuous function f: A / G may be

extended continuously to all of X, and let h: C(G,G) / C(A,G) be a constant-pre-

serving homomorphism of the topological group C(G,G) into the topological group

C(A,G). Then there exists f C(A,G) such that h(k) k f for every k C(G,G).

If we denote by f the extension of to all of X, define a function H:

C(G,G) / C(X,G) by H(k) k for each k C(G,G). Then H is a constant-pre-

serving F-homomorphism and I H h. This completes the proof.

In particular, if X is a normal space, and A a closed subset of X, then

every constant-preserving F-homomorphism h of the topological group C(R,R) into

the topological group C(Z,R) may be extended to a homomorphism H of the same kind

from the topological group C(R,R) into the topological group C(X,G) such that

I H=h.
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