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i. INTRODUCTION.

Let K and S* be the classes of close-to-convex and starlike functions in

n
y {z: z < i}. Let f be analytic in y and f(z) z + a z The qth

n--2 n

Hankel determinant of f is defined for q > i, n > i by

H (n)=
q

an an+l an+q-1

an/1

an+q_I an+2q_2
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For f S*, Pommerenke 2] has solved the Hankel determinant problem completely.

Following essentially the same method, we extend his results in this paper to

the class K.

2. MAIN RESULTS.

THEOREM i. Let fK and f(z) z + a z Then, for m 0,i,..., there
n=2 n

are numbers Ym and c ( 0 m) that satisfy Cmo Cmm i andmu

such that

k--0

m
c 0 (1)n-l’l"Ym

=0
my an+

The bounds (2.1) are best possible.

PROOF. Since f % K, there exists g % S* such that, for z E y

zf’(z) (z)h(z), Reh(z) > 0 (2.2)

Now g can be represented as in [I], g(z) z exp 12 log. 1
d(t)]

0 l-ze
-It

where 9(t) is an increasing function and (2) (0) 2. Let l > u2 a

be the jumps of (t), and t=Ol, 02,.. be the values at which these Jumps occur.

We may assume that 81 0. Then ul + e < 2 and I + 2 + + s 2
q

for some q if and oly if g is of the form

-2q -iOjg(z) z Jl (l-e z) q (2.3)

We define Cm by

and

m i0

4)m(Z) VTI1 (1-e

m" Sm+l (m= 0,i,...)

We consider the :hree cases i.e.
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3 3
(i) 0 < I -< i, (ii) 1 < =i < (iii) < i < 2

as in [ 2] and the first part, that is the bounds (2.1), follows similarly. For

the rest, we need the following which is well-known [ 2].

LEMMA. Let 81 < 82 < < 8q < 81 + 2, let i lq be real, and

> 0, j (j’l, ..., q). If

q -i 0
-Xj n(z) 1I (1-e Jz) y. b z

n
j =i n=l

(2.4)

then b 0(i) n as rt->

We write

and

where

m

bm(Z) c zm-
=0 m

m n+mbm(Z)zf’(z) . b zn+m+ (n+m)a z
n=1 ms n=l

n
b [ (n+u) c a
mn u=0 m- n-v

(2.5)

mn =0 m an+ i.

There are two cases.

(a) Let g in (2.2) have the form (3); that is, aI + a
2
+ + a 2.

q

2 2
With_v

m 8m, it follows that 7m
<
m+l Y0 + 71 + < 3 and implies

m m+l

2
m q-l, aI

a =--.
q q

Now from (2.2), (2.5) and the Cauchy Integral formula, we have, with

B (r)=
m

m

m+nl . [bmk irk+m,
r k=l

(n+m) la < 1 [,m(Z)g(z)h(z ) ld0+Bm(rmn n+m
2r 0

(2.6)
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Applying the Schwarz inequality, we have

(n+m) amn <

2r
n+m

0
I#m(Z)g(z)12d0)*’(

0
lh(z) 12d0)1/2 + Bin(r)

When we write [#m(Z)g(z)]
2

in the form (2.4) the exponents -l satisfy
j

lj < 2Ym (j=l, q: m > 0). Hence, using the Lemma, we have

2Ym-I.{m(Z)g(z), {,2 dO < A n (n+).
0

(2.7)

A8o

1 12 {h(z){2dO . {dn[2r2n (do--l) Reh(z) > 0
2

0 n=0

But {d < 2, n e 1, and so
n

2 l+3r
2

{h(z) 12d0 < i+4 . r n-- 2
n--i l-r

<An, n>l (2.8)

From (2.7) and (2.8), we have

(n+m) lamn < An7m (n-)

Ym-ii.e. a 0(1) n (n=).

This proves the theorem in this case.

(b) Let g in (2.2) be not of the form (2.3). Then using arguments llke those

i0
in [2], it follows that, for z re

{#m(Z)g(z)h(z)ld0 0(1)(l-r)
0

Hence from (2.6), we have

a O(l)n (n-),

where a is defined by (5).
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-2/q 9q+l
The function f f (z) z(l-zq) [ (2/q9-1)z shows that the

o o =0

bounds (i) are best possible. We also note that except in the case where

2
m=(q-l) and g in (2.2) is not of the form (2.3), one can choose 0 -< Ym >

m+l

from theorem (i) and Pommerenke’s method [ 2], we can now easily prove the

following . n
THEOREM 2. Let f K and f(z) z + a z

n=2 n

Then for q > i, n > i,

H (n) 0(1)n2-q (n-)
q

This estimate is best possible. In particular, if g in (2.2) is not of the form

(2.3), there exists a 6 6(q,g) > 0

such that H (n) 0(1)n2-q-6 (n-=).
q
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