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ABSTRACT. The rate of growth of Hankel determinant for close-to-convex functions
is determined. The results in this paper are best possible.
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1. INTRODUCTION.
Let K and S* be the classes of close-to-convex and starlike functions in
o
y = {z: |z| < 1}. Let f be analytic in y and £(z) = z + z anzn. The qth

n=2
Hankel determinant of f is defined for q 2 1, n 2 1 by

a8 A eeees a +q-1
Hq (n) = B Lq rrreeereeseens
a P a +2q-2




478 K. INAYAT NOOR

For f €S*, Pommerenke [ 2] has solved the Hankel determinant problem completely.
Following essentially the same method, we extend his results in this paper to
the class K.

2. MAIN RESULTS.

THEOREM 1. Let f€K and £(z) =2+ | a 2. Then, for m = 0,1,..., there
n=2
are numbers Yo and cmu (w =0, ..., m) that satisfy Icmol = lcmml = 1 and

©

2
kZon53’°$Ym57-+—1 .1
such that
m
uZo o %oy 0(1)n m () .

The bounds (2.1) are best possible.

PROOF. Since f € K, there exists g € S* guch that, for z € vy

zf'(z) = g(z)h(z), Reh(z) > 0 (2.2)
Now g can be represented as in [1], g(z) = z exp [ JZW log ———L—I— du(t)],
0 1-ze t
where u(t) is an increasing function and u(2m) - u(0) = 2. Let ay 2 a, 2 ...

be the jumps of u(t), and t=el, 62,... be the values at which these jumps occur.

We may assume that 6. = 0. Thena, +a- + .... < 2 and a, + o, + +a =2
1 i 2 1 2 tee q
for some q if and ouly if g is of the form
T e
g(z) = z jEl (1-e z) (2.3)

We define ¢m by

o 16
¢ (2) = i (-e Y2,

and
Bm Y (m=0,1,...)

We consider the three cases i.e.
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) 0sa <1, (1) 1<a1<—2-, (1i1) %SaISZ

as in [ 2] and the first part, that is the bounds (2.1), follows similarly. For

the rest, we need the following which is well-known [2].

LEMMA. Let 6, < 6, < ... <0_ <8, + 27, let A

1 2 q 1 12 s Aq be real, and
A>0, A2 Aj (J=1, ..., q@). 1If
q -i6, _ ©
W(z) = T (l-e Jz) 5= 7 b " 2.4)
j=1 n=1 ©
then bn = 0(1) n>‘-l as no,
We write
¢m(z) = rf Cm zm'l-l ’
u=0 "
and
v n+m T n+m
o (2)ef'(z) = ] bz "+ ] (ntma_ z (2.5)
n=1 n=1
where
n
bmn = vZO (n+v) Sy 2n—y °
an = Lo cmu a lcmol = Icmml = 1.

There are two cases.

(a) Let g in (2.2) have the form (3); that is, @y + @, + ...+ uq =2,

2 2
With Ym Bm’ it follows that Yo < = Yo + Y1 + ... £ 3 and Am = o implies
2
m = g-1, al cee aq a

Now from (2.2), (2.5) and the Cauchy Integral formula, we have, with

1 ¥ k+m
By =g Llbg [0
r k=1 o
@) |a | s —= f [¢_(2)g(2)h(2)|de+B_(x). (2.6)
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Applying the Schwarz inequality, we have

1
21rrn+ln

2T 2. % 2w 2. 3
(ntm) |agy | < <[o lo_(2)g(2)| o) <J0 In(2)|%a8)* + B_(x) .

When we write {¢m(z)g(z)]2 in the form (2.4), the exponents -\, satisfy

3

A, < 27m (j=1, ... q: m > 0). Hence, using the Lemma, we have

i
2w 2 2y -1
J lo (2)e(2)|" de <an ™ , (w=). (2.7)
0

Also

27 ©
L f In(z)|%a6 = J |d_[*%® (d =1), Reh(z) > 0
0 n o

27 n=0

But Idnl <2, n21, and so

1

2r 2

2T o 2
J In(z)|%a0 < 1+4 § rZn=33T <un,nz1 2.8)
0 n=1 1-r

From (2.7) and (2.8), we have

Yo

(n+m)|amn| < An
vy -1

i.e. a = o) n ™ () .

This proves the theorem in this case.
(b) Let g in (2.2) be not of the form (2.3). Then using arguments like those

in [ 2], it follows that, for z = reie

2m —Ym
f l¢_(2)g(z)h(z) |de = 0(1)(1-r) ™ .
0

Hence from (2.6), we have

where a is defined by (5).
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-2/q
The function £ : f (z) = z(1-zY) = )
o o v=0

bounds (1) are best possible. We also note that except in the case where

vg+l

2/q+\)-l)z , shows that the

\Y

m=(q-1) and g in (2.2) is not of the form (2.3), one can choose 0 < Y > ;%I

from theorem (1) and Pommerenke's method [ 2], we can now easily prove the

following

o

THEOREM 2. Let f¢ Kand £(2) =z + ] az".
n=2

Then for q 21, n 21,

B () = oW)nZ™ Y (m)

This estimate is best possible. In particular, if g in (2.2) is not of the form

(2.3), there exists a 6§ = 8(q,g) > 0

2-q-8§

such that Hq(n) = 0(1)n ().
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