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ABSTRACT. Let S be a subset of a metric space X and let B(X) be the class of all
nonempty bounded subsets of X with the Hausdorff pseudometric H. A mapping

F : S+ B(X) is a directional contraction iff there exists a real o € [0,1) such
that for each x € S and y € F(x), H(F(x), F(z)) < ad(x,z) for each ze¢ [x,y] n S,
where [x,y] = {z € X : d(x,2) + d(z,y) = d(x,y)}. In this paper, sufficient
conditions are given under which such mappings have a fixed point.
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1. Introduction.
In this paper, we prove a fixed point theorem for set valued directional
contraction mappings (see definition below). The main result extends an earlier

result of Assad and Kirk [1] and has some interesting consequences.
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Throughout this paper, (X,d) represents a complete metric space and B(X) is
the class of all nonempty bounded subsets of X with the Hausdorff pseudometric H
induced by d (see [3] p. 33), that is if A,B € B(X), then

H(A,B) = max{sup d(a,B), sup d(A,b)}.
acA beB

It follows immediately from the definition of H, that for any A,B £ B(X),
d(x,B) < H(A,B) for any x € A, (1.1)
d(x,B) < d(x,A) + H(A,B) for any x € X, (1.2)
and given € > 0 and x € A, there exists a y € B such that
d(x,y) < H(A,B) + €. (1.3)
For x,y € X, we will denote
[x,y] = {z € X : d(x,2) + d(z,y) = d(x,)},
and (x,y] = [x,y] N~ {x}, (x,y) = (x,y] ~ {y}. The following result is due to

Caristi [2] and is used in the proof of the main result.

THEOREM (Caristi) Let f : X - X be a mapping. If there exists a lower
semi-continuous (£.4.c.) mapping ¢ : X »> [0,®) such that for each x € S,
d(x,£(x)) < ¢(x) - ¢(f(x)), (1.4)

then f has a fixed point.

2. MAIN RESULTS.
Let S be a nonempty subset of X.
DEFINITION 1. A mapping F : S = B(X) is a directional contraction (d.c)
iff there exists a real o € [0,1) such that for each x € S and y € F(x),
H(F(z), F(x)) < ad(z,x), (2.1)
for all z € [x,y] n S.

The real a in (2.1) will be called a contraction constant of F.

THEOREM 1. Let S be a closed subset of X and F : S - B(X) be a d.c mapping
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with contraction constant oa. If F satisfies
a) for each x € S, y € F(x)~ S, there exists a z € (x,y) n S with
F(z) ¢ S, (2.2)
b) the mapping g : S - [0,») defined by g(x) = d(x,F(x)) is £.5.c., (2.3)
then F has a fixed point, that is x ¢ F(x) for some x € S.

We first prove the following lemma which simplifies the proof of Theorem 1.

LEMMA. Under the hypothesis of Theorem 1, for any R,a < B < 1, there
exists a mapping A : S » B(X) with the following properties
i) for each x € S, A(x) # ¢ and A(x) c F(x), (2.4)
i1) if y € A(x), then d(x,y) < (1-B+a) td(x,F(x)), (2.5)
iii) if A(x) n S = ¢ for some x € S, then there exists a y = y(x) & A(x)
and a z = z(x,y) € (x,y) n S such that
d(x,y) < d(x,F(x)) + (B-a)d(x,z). (2.6)
PROOF. Define a mapping A : S -+ B(X) by
AG) = {y € F(x) : d(x,y) < (1-B+a) Td(x,F(x)}.
Since (1-B+a) < 1, A(x) # ¢ for any x € S and satisfies (2.4) and (2.5).
Suppose A(x) n S = ¢ for some x € S. Choose a sequence {yn} < F(x) such that
d(x,yn) +> d(x,F(x)). (2.7)
Since the sequence {yn} is eventually in A(x), we may assume that the sequence
{yn} < A(x). It then follows by the supposition that for each n € I (positive
integers), v, € F(x) N S and consequently by (2.2) for each n € I, there exists
az, satisfying
z € (x ,yn) n S and F(zn) c S. (2.8)
Now, since d(x,zn) f_d(x,yn), it follows by (2.7) that there is a subsequence
{z_ } of the sequence {zn} and a real A > 0 such that

d(x,z_ ) »> A. (2.9)
o,
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We claim that X > 0. Suppose A = 0. Then the sequence {z_ } » x. Moreover,
since Y, € F(x), it follows by the definition of F and (2.8) that
H(F(x), F(z_ )) <oad(x,z_ ) ~ 0 as k » o, (2.10)
Tk ik
Now, (2.10) implies that F(x) < S, for if y is an arbitrary element of F(x),
then by (1.3) for each k € I, there is a w

k

€ F(z_ ) such that
1 'S
d(y,w ) < H(F(x), F(znk)) + =+ 0 as k +» ©», Since {wk} < S and S is closed, it

k
follows that y and hence F(x) ¢ S. However, this contradicts the supposition
that A(x) n S = ¢. Thus A > 0. Now choose an € > 0 such that
§ = (B-a)X - € > 0. Then by (2.9), (B-—a)d(x,znk) > § eventually and hence
by (2.7) and the last inequality,
d(x,ynk) < d(x,F(x)) + 8 < d(x,F(x)) + (B-a)d(x,z_ )

eventually. Thus there exists a y = y_ and the corresponding z = 2
satisfying (2.8) such that (2.6) holds.

PROOF OF THEOREM 1. Define a mapping f : S -+ S as follows: for x € S,
let f(x) be any element of A(x) n S if A(x) n S # ¢; and if A(X) n S = ¢,
then by the lemma, there exist elements y = y(x) € A(x) and z = z(x,y) € (X,y) n S
satisfying (2.6), let f(x) = z in this case. Note that for any x € S,

H(F(x), F(f(x)) < ad(x,f(x)). (2.11)

This is obvious if A(x) n S = ¢ and if A(x) n S # ¢, then since f(x) € F(x)
and f(x) € [x,f(x)] n S, therefore the definition of F implies (2.11). Set
d(x) = (l-B)_lg(x). Then ¢ is £.4.c. on S. We show that f satisfies (1.4).
Let x € S. We consider cases (i) when A(x) n S # ¢ and case (ii) when
A(x) n S =¢. 1In case (i), f£(x) € A(x) and hence by (2.5),
d(x,£(x)) < (1-B+a) Yd(x,F(x)). This implies that
a(l-—B)—ld(x,f(x)) < ¢(x) - d(x,f(x)). Therefore, by (1.1), (2.11) and the last
inequality

PEX)) = (1-8) Lg(f(x)) < (-8 tHEFE), F(EX))) < o(x) - d(x,f(x)).
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Thus (1.4) holds in this case. 1In case (ii), there is a y = y(x) € F(x) such
that f(x) € (x,y) and satisfies (2.6). Thus by (2.6),
d(f(x),F(x)) < d(f(x),y) = d(x,y) - d(x,f(x)) < d(x,F(x)) - (1-B+a)d(x,f(x)).
It now follows by (1.2) and (2.11) and the above inequality that
1-B)o(f(x)) =g(£(x)) <d(f(x),F(x)) +H(F(x),F(f(x))) <d(x,F(x)) - (1-B)d(x,f(x)),
that is

d(x,£(x)) < ¢(x) - ¢(£(x)).
Thus f satisfies (1.4) and consequently by Caristi's theorem f(x) = x for
some X € S. This implies that x € F(x) for otherwise f(x) ¢ A(x) n S and hence
by the definition of f, A(x) n S = ¢. Thus f(x) € (x,y(x)) for some y(x) € A(x).
This contradicts x # f(x). Consequently, x € F(x).

Recall, that a metric space is called convex iff for each x,y € X, x # y
there exists a z € (x,y). It is easy to show (see [4]) that if S is aiclosed
subset of a complete, convex metric space and x € S and y ¢ S, then there
exists a z € [x,y) n 3S where 3S denotes the boundary of S. As a result of this,

the following is an immediate consequence of Theorem 1.

COROLLARY 1. Let X be convex and S a closed subset of X. Let F : S=B(X)
be a d.c mapping such that £(3S) ¢ S. If g(x) = d(x,F(x)) is £.4.c. on S, then
F has a fixed point.

The following special case of Corollary 1 extends to B(X) an.earlier

result of Assad and Kirk [1].

COROLLARY 2. Let X be convex and S a closed subset of X. Suppose
F : X » B(X) satisfies the condition: there exists an a € [0,1) such that for

all x,y € S,
H(F(x), F(y)) < ad(x,y). (2.12)

If F(3S) < S, then F has a fixed point.
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PROOF. Since a mapping F satisfying (2.12) is a d.c mapping, it suffices
to show that the mapping g on S defined by g(x) = d(x,F(k)) is continuous. To
prove this, let {xn} be a sequence in S such that {xn} +x € 8. It follows
that for each n € I,

g(x) = d(x,F(x)) j_d(x,xn) + d(xn,F(x)) < d(x,xn) + g(xn) + H(F(xn), F(x)).
That is, g(x) gig(xn) + (li-a)d(xn,x). Similarly, it follows that for each

nel, gx) < gl + (L+a)d(x ,x). Thus |g(x ) - g(x)| > 0 as n + =,
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