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1. INTRODUCTION.

This paper is concerned with the fourth order differential equation
(PEYM" - ax)y" - r(x)y =0 , (L)
and its adjoint
(p(x)y" - q(x)y]" - r(x)y = 0, (L*)

where p, q and r are assumed to be continuous real-valued functions on the interval
R+ = [0, »). In addition, it is assumed throughout that p > 0, ¢q 2 0 and r 2 0 on
R+, with r not identically zero on any subinterval. It is clear that if q is a
constant, then (L) is selfadjoint; otherwise (L) is non-selfadjoint.

The objectives of the paper are to study the behavior of Wronskians of solutions
of (L) and (L*), and to relate this behavior with the oscillation of (L) and (L¥*),
as well as to the structure of the subspaces of the solution spaces of (L) and (L%*).
A nontrivial solution y of (L) {(L*)} is oscillatory if the set of zeros of y is not
bounded above. If the set of zeros of y is bounded above, implying that y has only
finitely many zeros on R+, then y is nonoscillatory. Equation (L) {(L*)} is oscill-
atory if it has at least one nontrivial oscillatory solution. For convenience here-
after, the term "solution" shall be interpreted to mean '"nontrivial solution."

Various special cases of (L) have been studied in detail. In particular, we

refer to the fundamental work of W, Leighton and Z. Nehari [10,Part I] on the self-

adjoint equation
(&Y -ty = 0 (1.1)

M. Keener [7,Part I] continued the investigation of (l.1), concentrating on the

oscillatory behavior of solutions. S. Ahmad [1] considered the selfadjoint equation

vy iy =0 (1.2)
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and gave a necessary and sufficient condition for the existence of a linearly inde-
pendent pair of oscillatory solutions. In [12] and [13] V. Pudei investigated the

behavior of solutions of the equation

y(l’) -qx)y" - r(x)y =0 . (1.3)

Finally, we refer to the authors' work in [5] where sufficient conditions for the
oscillation of (L) and (L*) are given, and where the behavior of both oscillatory

and nonoscillatory solutions is studied.

2., PRELIMINARY RESULTS.

As a notational convenience in treating the solutions of equations (L) and (L¥%),

we introduce the following differential operators.

Dgy(x) = Dpy(x) = y(x), Dyy(x) = Dy(x) = y' (),

Dy = PN (), Dy = (Y@, DG = PGV

Diy(x) = pGOY"(X) - AV, Dyy(d) = [GIY"() - AT

DZY(X) = [p(x)y"(x) - qx)y(x) ]"

Our first result is essential in the work which follows. Corresponding results
for equations (1.1), (1.2), and (1.3), are given in [7], [1] and [13], respectively.
The proof is a straightforward modification of the proofs of Lemmas 2.1 and 2.2 in

[101].

THEOREM 2.1. If y is a solution of (L) {(L*)} such that Diy(a) >0
* +
{Diy(a) >0}, 1 =0, 1, 2, 3, for some a € R, with strict inequality for at least
* *
one i, then D, y > 0 {Di y >0}, i=0,1, 2, 3, D,y 20 {D4y >0} on (a,») and

*
1lim Diy(x) = {lim D,y(x) = »}, i
X->o0 X

0, 2.

|v

If z is a solution of (L) {(L*)} such that (-l)iDiz(b) 0 {(-nt D:z(b) > 0},
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i=0,1, 2, 3, for some b € R+, b > 0, with strict inequality for at least one i,

* *
then (-1)'Dyz > 0 {D;z > 0}, 1 =0, 1, 2, 3, and D,z > 0 {D,z > 0} on [0,b).

4
It is clear from Theorem 2.1 that (L) and (L*) each have unbounded nonoscil-
latory solutions. In fact for any point a € R+, the four solutions Yi(x,a),

i=0,1, 2, 3, of (L) {(L*)} determined by the initial conditions

. % _ }
11 {DjYi(a,a) = Gij

DiYi(a,a) =4
i, j =0, 1, 2, 3, where Gij is the Kronecker delta, are monotone increasing (on
[a, ©)), unbounded solutions which form a solution basis for (L) {(L*)}; a so-called

canonical basis. In general, a nonoscillatory solution y of (L) {(L*)} satisfying

*

Diy(x) > 0, Diy(x) > 0},i=0,1,2,3, on (b), for some b € R+, is strongly increasing.
The next theorem provides the existence of a bounded nonoscillatory solution.
The technique employed in establishing this result is well-known (see [7, Theorem

1.11, or [1, Theorem 2]) and, consequently, the proof is omitted.

THEOREM 2.2. There exists a solution w of (L) {(L*)} such that

3 3
*
(1) T DWw) #0 {1 Dwx #0}onk
i=0 i=0
(i1) sgn Dyw = sgn D,w # sgn D,w = sgn Dyw
( o * 4 o oF
sgn Dyw = sgn Dzw sgn D;w = sgn 3w}
+

on R

*
(1ii) 1lim Dlw(x) =0 {lim Diw(x) =0}, 1i=0, 1, 2, 3,
X0 X0

lm [w(x)| =k >0
X -
i i *
A solution w of (L) {(L*)}which satisfies (-1) Diw(x) >0 {(-1) Diw(x) > 0}.
+
i=0,1, 2, 3, on R is said to be strongly decreasing. Of course, by Theorem 2.2,

each of (L) and (L*) has such a solution.
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Pudei [13, Theorem 55] has shown that equation (1.3) is oscillatory if and
only if its adjoint is oscillatory. With obvious modifications, his proof can
be extended to the case of (L) and (L*). An alternative proof of this fact can
be accomplished by showing that the nEh conjugate point of a with respect to (L)
coincides with the nEh conjugate point of a with respect to (L*), and then
applying Leighton and Nehari's result [10, Theorem 3.8]. The final theorem in
this section gives a necessary and sufficient condition for the existence of
oscillatory solutions of (L) and (L*). The authors established this result for
(L) (see [5, Theorem 4.1]) using the approach developed by Ahmad in [1]. This
approach can also be used to establish the result for (L%).

THEOREM 2.3. The following two statements are equivalent:

(a) Equation (L) {(L*)} is oscillatory

(b) If y is a nonoscillatory, eventually positive solution of (L) {(L*)},
then y is either strongly increasing or strongly decreasing.

3. WRONSKIANS OF SOLUTIONS.

Let S and S* denote the space of solutions of (L) and (L*) respectively.
The theorems of the previous section suggest the identification of the following

subsets of S, and of S*:

I =1{y eS| either y or -y is strongly increasing}
D={wesS I either w or -w is strongly decreasing}
0=1{z¢€¢3S I z ¢S uD}

Let I*, D* and 0* be the corresponding subsets of S*. Theorems 2.1, 2.2 and 2.3
specify that none of these subsets is empty. Moreover, according to Theorem 2.3,
(L) {(@*)} is oscillatory if and only if every solution in 0 (0%*) is oscillatory.
In this section we study the Wronskians of solutions of (L) and (L*), we
give some basic identities satisfied by these Wronskians, and we give a neces-

sary and sufficient condition for the nonoscillation of (L) and (L*) in terms of
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these Wronskians.

Let u, v, y, z € S . Then

u v y
u v
wz(u,v) = Dlu Dlv , w3(u,v, y) = Dlu Dlv Dly
D2u D2v D2y
u v y

Wa(u,v,y,z) - Dlu Dlv Dly Dlz

D2u D2v Dzy Dzz

D3u D3v D3y D3z

The Wronskians W:(u,v), w;(u, v, y) and WZ(u, v, ¥y, z) of solutions u, v, y, 2z
of (L*) are defined in a similar manner. Of course W4(u, v, ¥, z)Zk (constant)
{WZ(u, v, ¥, z) = k} on R+, and k # 0 if and only if {u, v, y, z} is a solution
basis for (L) {(L*)}. Also, it is well-known (and easy to verify by direct
calculation) that if u, v, y are any three linearly independent solutions of
@ (@}, then Wy(u, v, y) (Wy(u, v, Y} is a solution of a®y (w?.
The linear operators L and L* associated with equations (L) and (L*),

respectively, are defined by

Lyl = [p(x)y"]" - q(®y" - Xy,

LIy] = [py" - 4@yl - r(®y

A function y defined on R' is said to be admissable for L {L*} if each of y and

py" {py" - qy} is twice differentiable on R+. If y is admissable for L and z is

*
admissable for L , then they satisfy the Lagrange identity.

2lly] - yL™Tz2] = {y;z}", (3.1)
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where

{ysz} = 2(py")' - g'(py") + (pz" - qZ)y' - (pz" -QZ)'y
=2 (-l)lD:z D3_iy
i=0 (3.2)
If follows from (3.1) that if y € S and z ¢ S*, then {y;z}' = 0, which

implies {y;z} = k (constant) on R+. Thus the relation (3.2) determines a
function {.,.}: S x S* + R (the reals), and it is easy to verify that this
function is linear in each of its arguments. This function can also be used to
express a relationship between certain Wronskians of orders 3 and 4. 1In
particular, let u, v, y € S be linearly independent, and let z € S. Then
Wy(u, v, y) €S and

{z; Wylu, v, 9} =W, (u, v, 5, 2) . (3.3)

*
Similarly, if v, y, z € S*are linearly independent and u € S , then

W;(v, y, z) € S and

{W;(v, y, z); u} = WZ(u, Vy, Vs Z) . (3.4)
These identities are an extension of the ideas introduced by J. M. Dolan in [4].
They can be verified by expanding WA along its last column and WZ along its
first column. It is clear from identities (3.3) and (3.4) that {u, v, y, z}
forms a solution basis for S (S*) if and only if
{z5W,(u, v, M)} =k #0 ({W;(v, ¥y, z); ul =k # 0).

Our first two results establish a connection between two and three
dimensional subspaces of S (S*) and certain second and third order Wronskians.
These results are related to the Wronskian identities established by W. J. Kim
in [81.

* *
THEOREM 3.1. Let y € S (S) and let S; (Sy) be the subset of § (S)

defined by
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S;={zes*|{y;z}=0} (Sy={u5$|{u;y}_—.0)

Then:

(i) The set S; (Sy) is a three dimensional subspace of S* (S).

(ii) Let u € S (S*). Then S; = S: (Sy = Su) if and only if y = ku for
some nonzero constant k.

(iii) Let u, v, z be a basis for S; (Sy). Then w;(u, v, z) = my
(W3(u, v, z) = my) for some nonzero constant m. In fact, the basis u, v, z
may be chosen such that w;(u, v, 2) =Y (W3(u, v, z) =y) .

NOTE. The proofs in this section will be given in terms of elements of S
only. It will be clear that the same arguments apply equally as well for
elements of S*. ‘

PROOF. Part (i) follows from the fact that {y;z} = O essentially defines
a third order, linear, homogeneous differential equation.

Consider part (ii). Since {.,.} is linear in each of its arguments, it is
easy to see that if y = ku, then S; = S: (Sy = Su). To show the converse
assume that y, u € S are linearly independent. Since S; is a three dimensional
subspace of S*, it follows that if a is any point in Rf and i, j are any two
distinct integers, 0 < i, j < 3, then there exists a solution z € S; such that
D:z(a) = D;z(a) = 0. Fix any a € R+. Suppose y(a) = 0, u(a) # 0. Then it is
easy to verify, using the Lagrange identity, that S; contains the solution z
satisfying D;z(a) = D:z(a) = D;z(a) =0, D;z(a) =1, and z ¢ S:. Thus S; # S:.
The same argument applies if u(a) = 0, y(a) # 0. Now suppose y(a) # 0 and
u(a) # 0. From part (i) we can assume that y(a) = u(a). Let i, 1 < i < 3 be
the least integer such that Diy(a) # Diu(a). Such an integer exists since y and
u are linearly independent. Now choose z ¢ S; such that D;z(a) = D;z(a) =0,
j#k,0<j,k<2and j#3-1i, k# 3 - 1i. Then from the Lagrange identify

z £ S,
u
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For (iii), let {u, v, z} be a basis for S; and let W = W;(u, v, z}. Then,
from (3.4), {W;u} = {W;v} = {W;z} = 0, which implies S; = S;, and so
W = my from (ii). The last part of (iii) follows from the fact that
iw;(u, v, z) = W;(%u, v, z) {iw3(u, v, z) = W3(iu, v, z)}.

THEOREM 3.2. Let y,z € S(S*) be linearly independent. Then:

1) 3; n S: (Sy n Sz) is a two dimensional subspace of S* S).

(ii) If {u,v} is a basis for S; n S: (Sy n Sz), then
Wz(y, z) = kw;(u, v) {W;(y, z) = sz(u, v)} for some nonzero constant k.
Moreover u and v may be chosen so that Wz(y, z) = w;(u, v) {W;(y, z) = Wz(u, v)}.

PROOF. Part (i) follows from the fact that the intersection of two
distinct three dimensional subspaces of a four dimensional vector space has
dimension two.
To prove part (ii), assume that y, z € S are linearly independent and {u,v} is a
basis for S; n S:. Then u and v satisfy the "third" order equations

DgY D3¢ - Dyy Dyg + Dy D)~ Dyy Dy = 0

and
*

* * *
Doz D3cp - Dlz D,¢ + Dzz Dl:p- D3z Dy% = 0

Multiplying these two equations by y and z, respectively, and subtracting, yields
the second order equation

* " LU 3
Wz(y, z) D2q: - p(yz - zy )quJ+ [y DBZ -z D3qu)= 0

”

*
Now D2¢== PY - q¢ , so that this equation can be written.

" [ [
WZ(Ya Z)(P = wz(}’: Z)‘P + [y D3z -z D3Y - q](P= 0
P

Since u and v satisfy this equation, we have, by Abel's identity,

*
wz(y’ z) = k wz (Ll, V),

for some nonzero constant k, on any interval on which wz(y, z) # 0. The
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*
continuity of W,, W, and their derivatives imply that this equation actually

22 "2
holds on R+. Finally, since k W;(u, v) = w;(ku, v), we have (ii) in the case
y, z € S.

We conclude this section with a necessary and sufficient condition that
each of (L) and (L*) be nonoscillatory. This condition is stated in terms of
the nonoscillation of second and third order Wronskians of linearly independent
solutions. 1In particular, the Wronskian Wi (Wz), i =2 or 3, of linearly
independent solutions of S (S§ is nonoscillatory if there is a number b ¢ Rf
such that Wi (W:) is nonzero on [b, «); otherwise Wi (W:) is oscillatory.

THEOREM 3.3. Equations (L) and (L*) are nonoscillatory if and only if
every second and third order Wronskian w2, w3 {w;, w;} of linearly independent
solutions of S {S*} is nonoscillatory.

PROOF. Assume that all second and third order Wronskians of linearly
independent solutions of (L) are nonoscillatory. Then, in particular, all third
order Wronskians W3 are nonoscillatory. By Theorem 3.1 (iii) every solution of
S* is the Wronskian of three linearly independent solutions of S. Thus we can
conclude that (L*), and hence (L), are both nonoscillatory.

Now assume that (L) is nonoscillatory. Then Theorem 3.1 (iii) and the fact
that (L*) is also nonoscillatory implies that all third order Wronskians of
linearly independent solutions of (L) are nonoscillatory. Thus, it remains to
examine the second order Wronskians. Let y, z € S be linearly independent and

assume y > 0, z > 0 on [b, ®) for some b ¢ R+. It was shown in [5, Lemma 3.1]

that if u is any nonoscillatory solution of (L), then

Diu # 0 on [c, =) for some c ¢ R+ .

=2~

i=0
Therefore, by taking b large enough, we may assume y >0, z>0, Diy # 0,

D,z #0, i=1, 2, on [b, =), Suppose Wz(y, z) is oscillatory. Recall the



WRONSKIANS AND SUBSPACES OF DIFFERENTIAL EQUATIONS 285

subsets I, D and 0 of S. We show first that we cannot have y ¢ I, z ¢ D u 0

1 1
(or vice versa). Since Wz(y, z) =yz - 2zy , it is clear that y e I, z ¢ D is
impossible. Suppose, therefore that y € I and z € 0. There are three possible

cases for the signs of z and its "derivatives'.

|

(I) z>0,z >0, DZZ <0 on [b, =),
1
(I1) z>0,2z <O, Dzz > 0, D3z >0 on [c, »), ¢ =2 b,
1
(III1) =z >0, z > 0, D,z > o, D3z <0 on [c, »), ¢ = b.

Since y > 0 and y is strongly increasing, we may assume that Diy > 0,

i=1, 2, 3, on [b, »). If z satisfies (II), then wz(y, z) <0 on [c, ©). If z
satisfies (I), then W;(y, z) = yz" - zy" < 0 on [b, ») which implies that WZ has
constant sign on [d, ») for some d 2 b. Finally, suppose z satisfies (III).

Then it is easy to verify that

1
(PWZ) = + s
D2y D,z D3y D,z

and as a result of the signs of y, z and their '"derivatives'", we find that the
first term on the right hand side is monotone decreasing and the second term has

L 1
limit -~. Thus lim pW2 = -», This implies that W2 < 0 on [d, ») for some d 2 b
X-roo

and so Wz is eventually of one sign. We can now conclude that if Wz(y, z)
oscillates, then either y, z ¢ I, ory, z ¢ D v 0.

Assume y, z € I and Wz(y, z) oscillates. Choose u € D u 0 such that y, z, u
are linearly independent. Then Wa(y, z, u) # 0 on [a, ») for some a ¢ R+, and

{y, z, u} is a solution basis for the third order differential equation

¢ y z u
1
¢ Dly Dlz Dlu o
pv" Dzy D2z D2u ’
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which can be written in the form
n 1 ” Al
W3(y, z, w)(pyp) - W3(y, z, u)(pp ) + f(x)p + g(x)¢ = O. (3.5)

Now, the fact that u and Wz(y, u) are nonoscillatory implies that there exists
b > a such that u # 0 and Wz(y, u) # 0 on [b, ). Therefore, according to
Ahmad [2, p292] (see also, G. Polya [121),(8) is disconjugate on [b, ). This
implies that the adjoint of equation (3.5) is disconjugate on [b, «)

(see J. H. Barrett [3]). But ¥(x) = wz(y, z)/w3(y, z, u) is an oscillatory
solution of the adjoint equation, and we have a contradiction. The same method

of proof can be used if we assume that y, z ¢ D u 0 and Wz(y, z) oscillates.

4. SUBSPACES OF S AND S:

In this section we consider the structure of the three dimensional
subspaces of S and S*, and as a corollary, we also identify certain two
dimensional subspaces. We will be making use of the subsets I, 0 and 0 of
S and I*, D* and O* of S* defined in Section 2, and we shall also be concerned
with the "complimentary'" subspaces Sy* (Sy) determined by the solutions y of
S (S*). In this regard, recall that if y ¢ S (S*), then S; (Sy) is the three
dimensional space of solutions of the third order equation

D* * * * -0 4.1)
Doy 3cp - Dly D2<p+ D2y chp - D3y Docp = N .

* * * * *
Dyy Dy¥ - D,y Dy¥ + D,y D,¥ = Dyy Dp¥ = 0} (4.2)

3 2 1

In (67, M. Hanan defined two classes of third order linear differential

equations. In particular, a third order equation is in class C. on [a, «)

I

if amy solwtionswith # double zero *at some point b > a is nonzero on [a, b), and
it is in class CII on [a, =) if any solution with a double zero at b 2 a, is
nonzero on (b, «).

THEOREM 4.1. Let y ¢ S.
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(1) 1f y € I, then S; = [z, u, v] (= the space spanned by z, u, v), where
z € I*, u, v € 0*, W;(u, v) # 0 on [a, ») for some a = 0, and the third order
equation (9) is in class CII on la, «).

(ii) If y € D, then Sy* = [w, u, v], where w € D*, u, v e 0*, W;(u,v) #0
on [a, ») for some a > 0, and the third order equation (4.1) is in class
CI on [0, =).

(1ii) If y ¢ 0, then S; = [z, w, ul, where z ¢ I*, w € D* and u € O*

The corresponding statements hold if y e S*.

PROOF. As in Section 3, we will prove the theorem only for the case y ¢ S.

(1). Suppose y € I, and assume, without loss of generality, that y is
eventually positive. Then there exists a 2 0 such that Diy >0,1i=0,1, 2, 3,
on [a, ®»). Choose any b 2 a and let z be a solution of (9), i.e. let z be an
element of S; such that z has a double zero at b. Then it is easy to verify
from (9) thatrD;z(b) and Dgz(b) cannot have opposite sign. We may assume,
therefore, that D;z(b) >0, D;z(b) > 0 with at least one inequality being strict,
and so, by Theorem 2.1, z € I* and equation (4.1) is in class CII on [a, ).
Now choose w € D and consider the two dimensional subspace Sy* n Sw*’ If
u e Sy* n Sw*, then {y;u} = {w;u} = 0 from which it follows that u ¢ o*. Thus
Sy* n Swf = [u, v], where u, v ¢ 0*. Finally, from Theorem 3.2 (ii), there is a
nonzero constant k such that wz*(u, v) =k W2(y, w) # 0 on [a, »). Therefore
S; = [z, u, v] and the proof of part (i) is complete.

(i1). Suppose y € D, and assume, without loss of generality, that
(-1)i Diy > 0*on [0, »). Choose any b > 0 and let z be a solution of (4.1) such
that z has a double zero at b. Then it is easy to see from (4.1) that D; z(b)
and D; z(b) must have opposite sign, say D; z(b) > 0, D; z(b) < 0. Thus, by
Theorem 2.1, we have (—1)1D: z>0,1i =20, 1, 2, 3, on [0, b) and equation (4.1)

is in class CI on [0, @), Now, for each positive integer n, let z, be a solution
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* * *
of (4.1) which satisfies zn(n) = Dl zn(n) =0, Dzzn(n)> 0, Dazn(n) < 0. Then
by a standard "sequence argument' (see A. C. Lazer [9, Theorem 1.17 or Ahmad [17),
we can construct a solution w of (4.1) such that

*

* * *
sgl w = sgn D,w + sgn Dlw = sgn D,w on [0, ), i.e. such that w ¢ D . Now

choose any y € I and assume Diy >0, i=0,1, 2, 3 on [a, ©), a 2 0. Then by
*
using the same argument as in part (i), we can conclude that S_ = [w, u, v],
* * *
where w ¢ D, u, v e 0 and W2(u,v) # 0 on [a, =).
* * *
(iii). Suppose y € 0. Choose any z € I and any w € D. Then Sy n Sz n Sw
* * * *
is a one dimensional subspace of S, and if u € Sy n Sz n Sw’ then u must be in
* * *

0 because {z;u} = {w;u} = 0. Thus Sy contains an element u in 0 . Now,

*
suppose that y is oscillatory, and let {z 9 23} be a basis for Sy. Then, by

1’ 2
*
Theorem 3.1 (iii), w3(zl, Zys 23) = my for some nonzero constant m. Let b be a
*
zero of y. Then w3(z1, Z,» z3)(b) = 0 which implies that there exists a

nontrivial linear combination z of the solutions z such that z has a

1’ %20 %3
triple zero at b. We may assume that Dgz(b) > 0 and conclude, by Theorem 2.1,
that D:z >0,i=0,1, 2, 3, on (b,®) so that z ¢ I*. Let {bn} be the sequence
of zeros of y. Then for each positive integer n there is a solution z of (4.1)
such that D:zn(bn) =0, 1i=0,1, 2 and D;zn(bn) < 0. Thus, by Theorem 2.1,
(—l)i D:zn >0,i=0,1, 2, 3 on [0, bn), and so, by using the ''sequence
argument" cited above we can construct a solution w in S: such that w € D*.
Finally, it is easy to verify that S; = [z, w, ul.

Now suppose that y is nonoscillatory. As observed in the proof of
Theorem 3.3, y and its derivatives must satisfy one of the following three sets
of inequalities on an interval [a, «).

(D y>0,y >0, Dy<0

(I1) y > 0, y' <0,D2y>0,D3y>0

\J
(II) y >0,y >0, D%y >0, Dy <0

3
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In each case y has two consecutive derivatives Diy, 0 <1 £ 2 which have

Diy¥>
the same sign on [a, ®), and two consecutive derivatives Djy, D
which have opposite sign on [a, ). Choose any b =2 a. Let z be a solution of
(4.1) such that D:z(b) = 0 for the two m's with the property that D:z(b) is not
a coefficient of either Diy(b) or Di+1y(b). It then follows that the remaining
two "derivatives'" of z at b cannot have opposite sign. Assuming that at least
one of these 'derivatives" is positive, we have z ¢ 1. Now let {bn} be an
increasing sequence in [a, «) with %ig bn= o, For each positive integer n, let
z be a solution of (4.1) such that D:zn(bn) = 0 for the two m's with the
property that D:zn(bn) is not a coefficient of either Djy(bn) or Dj+1y(bn)‘
Then we can conclude from equation (9) that the remaining two "derivatives" of
z at bn must have opposite sign. Thus the consecutive "derivatives' of z,
must have opposite sign on [0, n), and the "sequence argument'" allows us to
construct a solution w of (4.1) such that w e D*. Finally, it is easy to

verify that the three solutions, u, z, and w are linearly independent, and this

completes the proof of the theorem.

There are a variety of consequences of Theorem 4.1 which describe the
structure of the two and three dimensional subspaces of S and S*. We list these
results in the following corollaries.

COROLLARY: (1) Every three dimensional subspace of S(S*) has a non-
oscillatory solution.
(2) Equation (L) {(L*)} is oscillatory if and only if every three dimensional
subspace of S (S*) has an oscillatory solution.
(3) Every three dimensional subspace of S (S*) contains a pair of solutions
whose Wronskian is nonzero on [a, ») for some a 2 O.

PROOF. Let T be any three dimensional subspace of S (S*), and let

*
{yl, Yy y3} be a basis for T. Then y = W(yl, Yy y3) {y=w (yl, Yoo y3)} is
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* *
an element of S (S8), and T = Sy (T = Sy).
*
We now consider the two dimensional subspaces of S and S . We note that
corresponding to any two dimensional subspace T of S there is a unique two

* *
dimensional subspace T = Sy

n S: of S*, where {y, z} is any basis for T.
Similarly, a two dimensional subspace T* of S* determines a unique two
dimensional subspace T of S.
COROLLARY 2. Let Tbe a two dimensional subspace of S. Then T satisfies
exactly one of the following:
(1) T=1I[y,ul, yelI, ue 0, and T* = [z, vl, z ¢ I*, v e 0*
(2) T=1I[y,wl,yel, weD, and T - lu, v), u e O*» v e o*
and every combination of u and v is in O*.
3) T=I[w,ul,weD, ue0, and T* =[z, vl, z ¢ D*, v € 0*
) T="[u,v], uce 0*, v € 0* and every combination of u and v is in 0*,
and T* = [y, wl, vy € I*, w e D*.
Clearly, the corresponding statements hold if T* is a two dimensional subspace
of S*.
PROOF. The four cases follow from the fact that if T is any two dimensional
subspace of S, then T n (Qu D) # @ and T n (0 ul) # @. This fact can be

*
established by considering the intersections T n Sy and T n Sw’ where y ¢ T,

*
w € D, and using Theorem 4.1.

The structure of T specified in cases (1) - (3) is easy to verify. The
structure specified in (4) follows from the fact that if y e 0*, then any two
dimensional subspace of Sy must contain either an element of I, or an element of

* *
D. Thus T cannot contain an element of  from which it follows that
* * *
T =Ty,wl,yel,weO.
*
We conclude by noting that if the equations (L) and (L ) are oscillatory,

then the structure of a two dimensional subspace can be determined by
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looking at the Wronskian of a basis for the subspace. Recall that if (L) and
* *
(L) are oscillatory, then every solution in 0 and (0 is oscillatory.
*
COROLLARY 3. Assume that equation (L), and hence (L ), are oscillatory.
Let T be a two dimensional subspace of S, let {yl, yz} be a solution basis for
T, and let W(x) = Wz(yl, yz).
(1) If W is oscillatory, then either T = [y, ul, y € I, u € 0 and
* * * *
T =[z,v]l,zel,veO,orT=[w,ul,weD, ueQand T = [y, v,
* *
vyeD,veO.
(2) If W is nonoscillatory, then either T = [y, wl, y € 0, w € D and
* * *
T = [u, vl], u, v € 0 , every linear combination of u and v is in 0 , and the

zeros of two independent solutions separate on [a, ») for some a 2 0, or vice

* * *
versa, i.e. T =[u, v], u, ve 0, etc., and T =(y, wl, ye Il ,h6 weD.
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