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ABSTRACT. Let B be a commutative ring with 1, and G (={c}) an automorphism
group of B of order 2. The generalized quaternion ring extension B[j] over

B is defined by S. Parimala and R. Sridharan such that (1) B[j] is a free
B-module with a basis {1,j}, and (2) j2 = -1 and jb = o(b)j for each b in

B. The purpose of this paper is to study the separability of B{j]. The
separable extension of B[j] over B is characterized in terms of the trace

(= 1+0) of B over the subring of fixed elements under ¢. Also, the
characterization of a Galois extension of a commutative ring given by Parimala

and Sridharan is improved.
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1. INTRODUCTION.

In [6], we studied the separable extension of group rings RG and
quaternion rings R[i,j,k] over a ring R with 1. We have shown that
R[i,j,k] is a separable extension of R if and only if 2 is a unit in R.
Recently, S. Parimala and R, Sridharan ([5)) investigated another
class of quaternion ring extensions B[jl over a commutative ring B with
1 and with an automorphism group G (= {6}) of order 2, where B[j] is a
free B-module with a basis {1,j}, jz = -1, and jb = 6(b)j for each b in
B. Their work is based on the following characterization of a Galois
extension of a commutative ring ([5], Proposition 1.1): Let A be the
set of elements in B fixed under €. Assume 2 is a unit in A. Then, B
is Galois over A if and only if B@AB[j] z MZ(B)’ a matrix algebra over
B of order 2, where the Galois extension is in the sense of Chase-Har-
rison-Rosenberg ([27). The purpose of this paper is to study the separ-
ability of B[jl]. Without the assumption that 2 is a unit in A, we shall
characterize the separability of B[j] in terms of the trace (= 1+6) of
B over A, This shows the existence of a separable generalized quater-
nion ring extension BLj) with 2 not a unit in A. When Char(a) = 2, we
shall show that B[j] is a separable extension over B if and only if B
is Galois over A, Thus we can improve the above theorem of Parimala
and Sridharan. Then, the case in which 2 is a unit will be discussed,
and several examples are constructed to illustrate our main results.

2., PRELIMINARIES.

Let us recall some basic definitions as given in [11,[21,[31,[4]

and [6]. Let B be a commutative ring containing a subring A with the

same identity 1., Then B is called a Galois extension over A (CZJ, or

[31, Chapter 3) with a finite automorphism group G 1f (1) there exist
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elements {ai,bi in B/ 1 = 1,2,eeeyn for some integer n]-such that

Zaibi = 1 and ZaiG(bi) = O whenever § # 1 in G, and (2) A = {bin B

/ 6(b) = b for all 6 in G}. The map 26 is called the trace of B over
A denoted by Tr. Let S be a ring (not necessarily commutative) contain-
ing a subring R with the same identity 1. Then S is called a separable
extension of R if there exist elements, {ci,di in S/ i = 1,24e00,n for
some integer n} such that (1) a(Fc;8d;) = (Zcy@d;)a for all a in §
where 8 is over R, and (2) :cidi = 1, Such an element Zciadi is

called a separable idempotent for S. When R is contained in the center

of S, S is called a separable R-algebra. The separable R-algebra S is

called an Azumaya R-algebra if R is the center of S.

3. SEPARABLE QUATERNION ALGEBRAS.

Throughout, we assume that B is a commutative ring with 1, and G

(= {6)) an automorphism group of order 2 of B, and that B(j] is the
generalized quaternion algebra over A, where A is the subring of elements
fixed under €., Our main goal in the section is to study a separable ex-
tension BLj] over B without the assumption that 2 is a unit in A. We
begin with a description of the set of separable idempotents for B[j]
(if there are any) over B, Clearly, {l@l,1@j,j@l,jﬂj} is a basis for
BL1e Bl

LEMMA 3.1, The element x = a'1(1ﬁ1)+a'2(1@j)+a21(j&1)+a22(jﬁj) is
a separable idempotent for B[j] over B if and only if (1) a5, = -€(a11)

such that Tr(a11) =1, and (2) 6(a12) such that a12((b-6(b)) =0

321 =
for all b in B and Tr(aia) = 0.
PROOF. Let x be a separable idempotent for BLj] over B, Then

xu = ux for each u in B[jl. Hence xj = jx; that is,

6(a;,) (J@1)+6(a,,) (JR))- 6(ay,) (121)-6(a,,) (12)) =



240 G. SZETO

a11(1@j)-a12(1@1)+a21(j@j)-a22(jﬁl). Equating corresponding coef-
ficients, we have 6(a11) = 8555 34, = 6(a21); that is, a,, = -6(a11)
and ary = 6(a12) for 62 = 1. Also, bx = xb for all b in B, so
b, (b-6(b)) = 0. Thus x = ay,(181)+a,,(185)+6(a;,) (381)-6(ay4) (j83)
with a12(b-6(b)) = 0. Moreover, by the second condition of a separable
idempotent, a11+(a12+6(a12))j+6(a11) =1, so Tr(a11) = 1 and Tr(a12) =
0. Conversely, it is straightforward to verify that any x satisfying
all equations as given is a separable idempotent.

THEOREM 3.2. B[j) is a separable extension over B if and only if
there is an element ¢ in B such that Tr(c) = 1.

PROOF. The necessity is a consequence of Lemma 3,1. For the suf-
ficiency, if Tr(c) = 1, we take agq = 5 a4, = 857 = O, Then a11(191)-
S(all)(jﬁj) is a separable idempotent for BLj] by Lemma 3.1. Thus B[]l
is a separable extension over B,

Using Theorem 3.2, we can obtain a characterization of a separable
extension BLj] over B when Char(a) = 2.

THEOREM 3,3, Assume Char(A) = 2. Then, B[j] is a separable exten-
sion over B if and only if B is a Galois extension over A.

PROOF., Let B be a Galois extension over A, Corollary 1.3 on P. 85
in [3] implies that Tr(c) = 1 for some ¢ in B. Thus BLjJ) is a separable
extension over B by Theorem 3.,2. Conversely, by Theorem 3.2 again,
there exists an ¢ in B such that Tr(c) = 1, so (c+§(c)) = 1. By hypo-
thesis, Char(a) = 2, §(c) = 6(-c) = -6(c), so c-6(c) = 1. Hence the
ideal generated by {(b-6(b)) / b in B} = B, This implies that B is
Galois over A by the statement 5 in Proposition 1.2 on P. 81 in [3].

Let us recall that the theorem of Parimala and Sridharan (Propo-

sition 1.1 in £51): Assume 2 is a unit in A, Then, B is Galois over A
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if and only if B@ABLj] z MZ(B)’ a matrix algebra over B of order 2.
We are going to improve it without the assumption that 2 is a unit in A.

THEOREM 3.4. If B is Galois over A, then B@AB[j] bt ME(B).

PROOF. If B is Galois over A, there exists an c in B such that
Tr(c) = 1 (£33, corollary 1.3, P. 85). Hence BCjl is a separable ex-
tension over A by Theorem 3,2. But B is also a separable extension
over A by Proposition 1.2 in f}], so the transitive property of separ-
able extensions ([4], Proposition 2.5) implies that B[j] is a separable
A-algebra. Moreover, we claim that (1) B([j] is an Azumaya algebra
over A, and (2) B is a maximal commutative subalgebra of B[jl. The
proof of these facts was given in [7]. For completeness, we give an
outline here, For part (1), it suffices to show that A is the center
of BLjl. Clearly, A is contained in the center. Now, let b+b'j be in
the center. Then j(b+b'j) = (b+b'j)j and c(b+b'j) = (b+b'j)c for each
¢ in B, Equating coefficients of the basis {I,j} in the above equations,
we have that b is in A and b' = O by Statement 5 in Proposition 1.2 on
P. 81 in [3]., For part (2), to show that B is a maximal commutative
subalgebra of B[j] is to show that the commutant of B in B[jl is B.

The computation is similar Lo part (1).

Moreover, noting that B is separable over A, we then conclude
that BQA(B[jJ)O = HomB(B[jJ,BCjJ) by Theorem 5.5 on P. 65 in [3], and
this implies that B&AB[j] 4 MZ(B)’ where (B[j1)° is the opposite ring.

In (71, the sufficiency of the Parimala and Sridharan theorem was
shown by a different method from [5]. Now we slightly improve the
statement without the assumption that 2 is a unit in A.

THEOREM 3.5. Let B[j] be a separable extension over B, If

B@AB[j] i MZ(B)’ then B is Galois over A.
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PROOF., Since B[j] is a separable extension over B, there exists
an element ¢ in B such that Tr(c) = 1 by Theorem 3.2. Hence the se-
quence B—*A-*0 is exact under the trace map. But A is projective over
A, so the sequence splits, and then A is an A-direct summand of B, By
hypothesis, B®,B[j] -t M,(B) which is an Azumaya B-algebra, so BLj] is
an Azumaya A-algebra ([3], Corollary 1.10, P. 45). Therefore B is
Galois over A by using the same argument as given in [71.

In Theorem 3,5, the hypothesis that B@AB[j] =4 MZ(B) can be replaced
by that B@ABIJJ is an Azumaya B-algebra with the same proof,

4. SPECIAL SEPARABLE QUATERNION ALGEBRAS.

Theorem 3.5 tells us that B[j1 is an Azumaya A-algebra such that
B@ABCJJ £ MZ(B) when B is Galois over A, In this section, we are go-~
ing to discuss generalized quaternion algebras B[jl in which 2 is a
unit in A when B is projective and separable over A. With a similar
argument as given in Lemma 3.1, we have

LEMMA 4.,1. The element al1(1@1)+a12(1@j)+a21(jﬁl)+a22(jﬁj) in
.ARﬂﬁAAEj] is a separable idempotent for ACj] if and only if (1) a5 =

asy = 345 such that 2a12 = 0,

THEOREM 4.2. The A-algebra A[j] is separable if and only if 2 is

-2, such that 2a11 =1, and (2)

a unit in A,

PROOF. The necessity is clear by Lemma 4.1; the sufficiency is
immediate because (1/2)(121-j2j) is a separable idempotent,

Now we give a characterization of BLjJ in which 2 is a unit when
B is projective and separable over A.

THEOREM 4,3, Let B be separable and projective over A, Then,
B(j] is a separable extension over B and projective over A[j] as a bi-

module if and only if 2 is a unit in A,
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PROOF, Let 2 be a unit in A and let ¢ be (1/2). Then Tr(c) =
1/241/2 = 1, and hence B[j] is separable over B by Theorem 3,2, By
hypothesis, B is projective ovér A, so B[j] is left projective over
A (for BCjl is left projective over B). Hence B(jl is left projective
over A[j1 ([3], Proposition 2.3, P. 48). We next claim that B[j] is
also right projective over A[jl. In fact,dl: EBAACj]—4'BEj] defined
by d(b21+b'@j) = bb'j for all b and b' in B is an isomorphism as
right A[jJ-modules. But B is projective over A, so BR,A[j] is right
projective over A[jl. This proves that B[j] is right projective over
ALjl. Thus ij]QA(ij])o is projective as ALjl-A[j]-module. Since
B[3J1 is a direct summand of B[j1®,(B[j1)° as a B(j18,(BL31) °-module
(for B[jl is separable over A), B[jl is projective as a ALjI-ALjl-mo-
dule,

Conversely, to show that 2 is a unit in A, it suffices to show
that A[j] is a separable A-algebra by Theorem 4.2. Since B[jl is a
separable extension over B, Tr(c) = 1 for some ¢ in B by Theorem 3.2.
Hence Tr: B-»>A-0 is exact., We claim that Tr induces an exact se-
quence: B[j1»A[j1-20 as A[j1-A[jl-modules. We define fB:
BLjl->A[j]=0 by ﬁ(b+b'j) = Tr(b)+Tr(b')j. Clearly, B is an additive
group homomorphism. Moreover, for a,a' in A, (b+b'j)(ata'j) =
(ba=b'a')+(ba'+b'a)j, so B((b+b'j)(a+a'j)) = Tr(ba-b'a')+Tr(ba'+b'a)j =
(aTr(b)-a'Tr(b'))+(a'Tr(b)+aTr(b'))j. Also,
p(b+b'j)(a+a'j) = (Tr(b)+Tr(b')j)(a+a'j) = B((b+b'j)(ata'j)). Thus
@ is a right Aljl-homomorphism. Similarly, by noting that Tr = 1+§
and that (Tr)§ = Tr = 6(Tr), it is straightforward to verify that @B is
a left Afj)-homomorphism. But then A[j] is ALjl1-ACjl projective such

that 3 is onto (for Tr(c) = 1 in A[Lj]). This implies that the exact
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sequence B: B[Ljl1>» A[j1-0 splits as A[j]-A[jl-modules. Thus ALj] is
an A(j]-direct summand of B[jl. Now by hypothesis, BLjl is A [jl-pro-
jective, so BCj18,(B(j1)° is AC1®,ACiI-projective, where (BLj1)® is
the opposite algebra of B[jl. By hypothesis again, B33 is separable
over A, so Bfjl is projective over ACjJQAAth. Therefore, the A[Ljl]-
direct summand ALj] of B[jl is also projective over A[j]QAACJJ. This
proves that A[jl is separable over A, and so 2 is a unit in A by Theo-~
rem 4,2,
5. EXAMPLES.
This section includes several examples to illustrate our results.
(1) Let Z be the ring of integers, and ZxZ (= B) the ring of direct
product of Z under the componentwise operations., Define §: 2ZxZ->ZxZ
by 6(a,a') = (a',a) for a,a' in Z. Then 6 is an automorphism group of
order 2 and {(a,a) / a in Z} (= A) is the subring of 2ZxZ of the fixed
elements under 6. Imbed Z in ZxZ by a—»(a,a). Then we have
(a) 2Zx2Z is a free A-module with a basis {(I,O),(O,1)}.
(b) 2Zx7 is separable over Z.
(c) (2x2Z)[j]1 is a separable extension over ZxZ because Tr((1,0)) =
(1,0)+(0,1) = (1,1) by Theorem 3.2.
(d) 2z[jd is not separable over Z because 2 is not a unit in 2 by
Theorem 4,2,
(e) (zx2)(C3jd is not projective over Z(j] because 2 is not a unit
in Z by Theorem 4,3.
(2) Let Z(B) be the local ring of Z at the prime ideal (3). Re-
place Z by Z(3) in Example (1). Then we have
(a) 2 is a unit in Z(B)'

(b) All properties (a),(b) and (c) in Example (1) hold.
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(¢) (Z(B)XZ(3))£j] is projective over Z(3)ij by Theorem 4.3.

(3) 2xZ and Z(S)XZ(B) in Example (1) and Example (2) are Galois
over Z and 2(3) respectively by using Proposition 1.2 on P. 64 in [3],
Since Tr((3,-2)) = (3,-2)+(-2,3) = (1,1) which is not in any maximal
ideal of ZXZ or Z(3yxZ(3y. Thus (Zx2)8,(2xZ) (33 = M,(2xZ) and

s ~
(Z(S)XZ(B))QZ(B)(Z(B)XZ(B))cJ] = Ma(Z(B)XZ(B)) by Theorem 3.4,
(4) Let i be the usual imaginary unit., Then Z[il is not separable

over Z., Z[{il has an automorphism group {€: 6(a+bi) = a-bi for a,b in
Z} such that 62 = 1 and Z is the fixed ring of 6. Also, (a) (2[il)(j2

is not separable over Zfil, and (b) 2Z[il is not Galois over Z.
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