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GRACEFUL NUMBERS
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We construct a labeled graph D (n) that reflects the structure of divisors of a given natural
number n. We define the concept of graceful numbers in terms of this associated graph and
find the general form of such a number. As a consequence, we determine which graceful
numbers are perfect.
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1. Introduction. In [2], Gallian presented a detailed survey of various types of graph
labeling, the two best known being graceful and harmonious. Recall that a graph G with
q edges is called graceful if one can label its vertices with distinct numbers from the
set {0,1,...,q} and mark the edges with differences of the labels of the end vertices
in such a way that the resulting edge labels are distinct. A number of interesting
results on graceful and graceful-like labelings are obtained in [1, 3, 4] and some other
works. In this note, we give a description of natural numbers whose associated graph
of divisors satisfies certain graceful-like conditions. For any natural number n, we
construct a labeled graph D(n) that reflects the structure of divisors of n. We define
the concept of graceful number in terms of this associated graph and find the general
form of such a number. As a consequence, we determine which graceful numbers are
perfect.

2. Main results. Given a natural number n one can generate a graph D(n) that
reflects the structure of divisors of n as follows. The vertices of the graph represent
all the divisors of the number n, each vertex is labeled by a certain divisor. (In what
follows, we refer to the vertex of the graph D(n) with label k as the “vertex k.”) If
v and s are two divisors of n and r > s, then there is an edge between the vertices
s and 7 if and only if s divides » and the ratio /s is a prime number. As in the
theory of graceful graphs, we label such an edge by the difference v — s of the labels
of its vertices. In what follows, the sum of the labels of all edges of the graph D (n) is
denoted by SD(n) while SD (1) denotes the sum of labels of all edges of D (1) except
the edges terminating at n. (Clearly, if n = p{' p3? - - - pZ" is the prime factorization of
a natural number n, then SD(n) = SD(n) — Zle (m—-n/pi).)

EXAMPLE 2.1. It is easy to see that if n = p”, where p is a prime number and 7 is
any positive integer, then SD(n) = 3!_, (pi —pi1) = p" =1 and SD(n) = X'~ (pi -
pi~1) = p"~1 -1, so that SD(n) < n. The graph D(n) is shown in Figure 2.1.
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FIGURE 2.1. The graph D(p").

The following example shows that there are numbers n such that SD(n) > n, as
well as numbers that satisfy the condition SD(n) = n.

EXAMPLE 2.2. Letn =24 and m =12. Then SD(n) = (12-6) +(12—-4) + (8 —4) +
6-3)+(6-2)+4-2)+3-1)+(2-1)=30>nand SD(m) = (6-3)+(6-2) +
4-2)+3-1)+(2-1)=12=m.

DEFINITION 2.3. A natural number n is called graceful if SD(n) = n.

In order to obtain the description of graceful numbers, we first find the value of
SD(n) when n is a product of powers of two different prime numbers.

EXAMPLE 2.4. Let n = p”q° where p and q are different prime numbers, v > 1, and
s > 1. In this case the graph D(n) is of the form

FIGURE 2.2. The graph D(p"q°).

and SD(n) =X o X1 (pla’ —p'a’ )+ 311 X0 (p'a’ —p'ta)) = Siop' (@ 1)+
Zj‘:o ' (p” —1) (the first sum corresponds to the differences of the consecutive divi-
sors of n when the exponent of g decreases, and the second sum takes care about the
differences of consecutive divisors of n when the exponent of p decreases). Thus,
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so that

SD(n)=@(n)—[(n—%)+(n—%)]. (2.2)

It follows from formulas (2.1) and (2.2) that a number n = p"q* (p and g are prime,
¥ >1,and s > 1) is graceful if and only if p = 2 and s = 1, that is, n = 4q for some odd
prime number q.

Indeed, equality SD (n) = n can hold only for even numbers n (if n is odd, then (2.1)
shows that SD(n) is even, whence SD (n) = n). If n = 2"g*, where r > 2, s > 2, then

s
SD(n)—n= (27 _ 1) z qi + (qs _ 1)(27+1 _ 1) _2r+1q3 +2r—1q3 +21/qs—1 _qus
i=0

-2
> (Zr—l _ 2)qs + (27+1qs—1 _qs—l _ 27+1) + (21/ _ 1)32" qi (2-3)
i=0

>0,

so that SD(n) > n. Finally, if n =2"q (r = 1), then SD(n)-n = (g—-1)(2"*1 - 1) +
(2" -1 (g+1)-2"1g+2""1g+ 2" -2"q = q(2""1 - 2), so that SD(2"q) = 2"q if and
only if » = 2. Thus, for any two different prime numbers p and g, p < g, and for any
two nonnegative integers v and s, the number p"g* is graceful if and only if p = 2,
r=2,and s = 1.

Now, we generalize formula (2.1) to the case of arbitrary number »n. More precisely,
we show that if n = p{'p3? - - -p,:" is a prime decomposition of a positive integer n
(p1,...,pk are different primes and 74,...,7, are positive integers), then

k pfﬁl ]
SD(n)=> (pi'-1) ] (’1) (2.4)
i=1 1<jzkj=i \ Pi~

We proceed by induction on n. We have seen that the formula is true if n is a power
of a prime number or a product of two powers of primes. In order to perform the step
of induction, notice that

r2 "k . . _
S_D(n):S_D<£)+(pTlipTlfl) Z Z péZp}l(k +P;’ISD<1},1> (25)
p1 =0 ig=0 P
Applying the inductive hypothesis and taking into account that
— r Tk Lok K (,0;1“_1)
SD(m) = 2, - 2 pt-opd =1 2w = 1|~ =7 ) (2.6)
ir=0 ix=0 j=2i=0 j=2 pj

we obtain that
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1<jsk,j=ti

(2.7)

so formula (2.4) is proved.
Now, formulas (2.2) and (2.4) imply that

k Tt k
spm) =Y (pli-1) [] (Ll)—z(n—ﬁ> 2.8)

i=1 1<j<k,j+i

Formula (2.8) shows, in particular, that if a number » is odd, then SD(n) is even (it
is easily seen that both sums in the right side of the formula are even if »n is odd).
Therefore, every graceful number must be even, that is,

n=2"q---qm (2.9)

for some odd primes qi,...,qm (m > 1,5; > 1 fori =1,...,m). As we have seen, if
m = 1, then the number n is graceful if and only if s; = 1 and v = 2, that is, n = 4q;.
We show that if m > 2, then SD (n) > n, so the only graceful numbers are the numbers
of the form 4q where g is an odd prime

First of all, notice that SD(ZV Yy > 2"gqt forr = 1, s = 2 (see Example 2.4) and
SD(2q192) = 2q19> for any two dlfferent prlmes q1 and gq» (applying formula (2.1)
we obtain that SD(2q1q2) = (1 +1)(q2+1) +3(q1 — 1) (g2 +1) +3(q2 — D (q1 + 1) -
64192 +q1492+2q1 +2q> = 2q192 +3(q1 +4q2) — 5 > 2q1q>). Therefore, in order to prove
that SD(n) > n for any number n of the form (2.9) with m > 2, it is sufficient to prove
that SD(n) > qi*SD(n/q;7). But the last inequality is a consequence of equality (2.5).
Indeed,

r Sm-1 .
smn):ﬁ(n)-nzﬁ(i)mw- 1S Y LS digit...gin
dm i=0i1=0 im-1=0 (2.10)

n n
n> fm(5D< )——) mSp ( )
Qm ) a am dm am QWT

We arrive at the following result.

+quSD(

THEOREM 2.5. A natural number n is graceful if and only if n = 4q where q is an
odd prime.

Recall that a positive integer m is called a perfect number if it is equal to the sum
of all its proper divisors (i.e., of all divisors of m except of the number m itself). It is
known (cf. [4, Theorem 5.10]) that every even perfect number is of the form 2k-1(2k —
1), where the number 2¥ —1 is prime. Thus, our theorem implies the following result.

COROLLARY 2.6. The only perfect graceful number is 28.
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