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GRACEFUL NUMBERS
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We construct a labeled graph D(n) that reflects the structure of divisors of a given natural
numbern. We define the concept of graceful numbers in terms of this associated graph and
find the general form of such a number. As a consequence, we determine which graceful
numbers are perfect.
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1. Introduction. In [2], Gallian presented a detailed survey of various types of graph

labeling, the two best known being graceful and harmonious. Recall that a graphGwith

q edges is called graceful if one can label its vertices with distinct numbers from the

set {0,1, . . . ,q} and mark the edges with differences of the labels of the end vertices

in such a way that the resulting edge labels are distinct. A number of interesting

results on graceful and graceful-like labelings are obtained in [1, 3, 4] and some other

works. In this note, we give a description of natural numbers whose associated graph

of divisors satisfies certain graceful-like conditions. For any natural number n, we

construct a labeled graph D(n) that reflects the structure of divisors of n. We define

the concept of graceful number in terms of this associated graph and find the general

form of such a number. As a consequence, we determine which graceful numbers are

perfect.

2. Main results. Given a natural number n one can generate a graph D(n) that

reflects the structure of divisors of n as follows. The vertices of the graph represent

all the divisors of the number n, each vertex is labeled by a certain divisor. (In what

follows, we refer to the vertex of the graph D(n) with label k as the “vertex k.”) If

r and s are two divisors of n and r > s, then there is an edge between the vertices

s and r if and only if s divides r and the ratio r/s is a prime number. As in the

theory of graceful graphs, we label such an edge by the difference r −s of the labels

of its vertices. In what follows, the sum of the labels of all edges of the graph D(n) is

denoted by SD(n) while SD(n) denotes the sum of labels of all edges of D(n) except

the edges terminating at n. (Clearly, if n= pr1
1 p

r2
2 ···prkk is the prime factorization of

a natural number n, then SD(n)= SD(n)−∑k
i=1(n−n/pi).)

Example 2.1. It is easy to see that if n = pr , where p is a prime number and r is

any positive integer, then SD(n) =∑r
i=1(pi−pi−1) = pr −1 and SD(n) =∑r−1

i=1 (pi−
pi−1)= pr−1−1, so that SD(n) < n. The graph D(n) is shown in Figure 2.1.
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Figure 2.1. The graph D
(
pr
)
.

The following example shows that there are numbers n such that SD(n) > n, as

well as numbers that satisfy the condition SD(n)=n.

Example 2.2. Let n= 24 and m = 12. Then SD(n)= (12−6)+(12−4)+(8−4)+
(6−3)+ (6−2)+ (4−2)+ (3−1)+ (2−1) = 30 > n and SD(m) = (6−3)+ (6−2)+
(4−2)+(3−1)+(2−1)= 12=m.

Definition 2.3. A natural number n is called graceful if SD(n)=n.

In order to obtain the description of graceful numbers, we first find the value of

SD(n) when n is a product of powers of two different prime numbers.

Example 2.4. Let n= prqs where p and q are different prime numbers, r ≥ 1, and

s ≥ 1. In this case the graph D(n) is of the form
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Figure 2.2. The graph D
(
prqs

)
.

and SD(n)=∑r
i=0

∑s
j=1(piqj−piqj−1)+∑r

i=1

∑s
j=0(piqj−pi−1qj)=∑r

i=0pi(qs−1)+∑s
j=0qj(pr −1) (the first sum corresponds to the differences of the consecutive divi-

sors of n when the exponent of q decreases, and the second sum takes care about the

differences of consecutive divisors of n when the exponent of p decreases). Thus,

SD(n)= (qs−1
) r∑
i=0

pi+(pr −1
) s∑
j=0

qj = (qs−1
)pr+1−1
p−1

+(pr −1
)qs+1−1
q−1

, (2.1)
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so that

SD(n)= SD(n)−
[(
n− n

p

)
+
(
n− n

q

)]
. (2.2)

It follows from formulas (2.1) and (2.2) that a number n= prqs (p and q are prime,

r ≥ 1, and s ≥ 1) is graceful if and only if p = 2 and s = 1, that is, n= 4q for some odd

prime number q.

Indeed, equality SD(n)=n can hold only for even numbers n (if n is odd, then (2.1)

shows that SD(n) is even, whence SD(n)≠n). If n= 2r qs , where r ≥ 2, s ≥ 2, then

SD(n)−n= (2r −1
) s∑
i=0

qi+(qs−1
)(

2r+1−1
)−2r+1qs+2r−1qs+2r qs−1−2r qs

>
(
2r−1−2

)
qs+(2r+1qs−1−qs−1−2r+1)+(2r −1

) s−2∑
i=0

qi

> 0,

(2.3)

so that SD(n) > n. Finally, if n = 2r q (r ≥ 1), then SD(n)−n = (q−1)(2r+1−1)+
(2r −1)(q+1)−2r+1q+2r−1q+2r −2r q = q(2r−1−2), so that SD(2rq) = 2r q if and

only if r = 2. Thus, for any two different prime numbers p and q, p < q, and for any

two nonnegative integers r and s, the number prqs is graceful if and only if p = 2,

r = 2, and s = 1.

Now, we generalize formula (2.1) to the case of arbitrary number n. More precisely,

we show that if n = pr1
1 p

r2
2 ···prkk is a prime decomposition of a positive integer n

(p1, . . . ,pk are different primes and r1, . . . ,rk are positive integers), then

SD(n)=
k∑
i=1

(
prii −1

) ∏
1≤j≤k,j≠i


prj+1

j −1

pj−1


. (2.4)

We proceed by induction on n. We have seen that the formula is true if n is a power

of a prime number or a product of two powers of primes. In order to perform the step

of induction, notice that

SD(n)= SD
(
n
p1

)
+(pr1−pr1−1) r2∑

i2=0

···
rk∑
ik=0

pi22 ···pikk +pr1
1 SD

(
n
pr1

1

)
. (2.5)

Applying the inductive hypothesis and taking into account that

SD(n)=
r2∑
i2=0

···
rk∑
ik=0

pr2
2 ···prkk =

k∏
j=2

rj∑
i=0

pij =
k∏
j=2



(
p
rj+1

j −1
)

(
pj−1

)

, (2.6)

we obtain that

SD(n)=
(
pr1−1

1 −1
) k∏
j=2



(
p
rj+1

j −1
)

(
pj−1

)

+ k∑

i=2

(
prii −1

)((pr1
1 −1

)
(
p1−1

)
) ∏

2≤j≤k,j≠i



(
p
rj+1

j −1
)

(
pj−1

)



+
(
pr1

1 −pr1−1
1

) k∏
j=2



(
p
rj+1

j −1
)

(
pj−1

)

+pr1

1

k∑
i=2

(
prii −1

) ∏
2≤j≤k,j≠i



(
p
rj+1

j −1
)

(
pj−1

)


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=
(
pr1−1

1

) k∏
j=2



(
p
rj+1

j −1
)

(
pj−1

)

+ k∑

i=2

(
prii −1

) ∏
1≤j≤k,j≠i



(
p
rj+1

j −1
)

(
pj−1

)



=
k∑
i=1

(
prii −1

) ∏
1≤j≤k,j≠i



(
p
rj+1

j −1
)

(
pj−1

)

,

(2.7)

so formula (2.4) is proved.

Now, formulas (2.2) and (2.4) imply that

SD(n)=
k∑
i=1

(
prii −1

) ∏
1≤j≤k,j≠i


prj+1

j −1

pj−1


− k∑

i=1

(
n− n

pi

)
. (2.8)

Formula (2.8) shows, in particular, that if a number n is odd, then SD(n) is even (it

is easily seen that both sums in the right side of the formula are even if n is odd).

Therefore, every graceful number must be even, that is,

n= 2r qs11 ···qsmm (2.9)

for some odd primes q1, . . . ,qm (m ≥ 1,si ≥ 1 for i = 1, . . . ,m). As we have seen, if

m = 1, then the number n is graceful if and only if s1 = 1 and r = 2, that is, n= 4q1.

We show that ifm≥ 2, then SD(n) > n, so the only graceful numbers are the numbers

of the form 4q where q is an odd prime.

First of all, notice that SD(2rqs11 ) ≥ 2r qs11 for r ≥ 1, s ≥ 2 (see Example 2.4) and

SD(2q1q2) ≥ 2q1q2 for any two different primes q1 and q2 (applying formula (2.1)

we obtain that SD(2q1q2) = (q1+1)(q2+1)+3(q1−1)(q2+1)+3(q2−1)(q1+1)−
6q1q2+q1q2+2q1+2q2 = 2q1q2+3(q1+q2)−5> 2q1q2). Therefore, in order to prove

that SD(n) > n for any number n of the form (2.9) withm≥ 2, it is sufficient to prove

that SD(n) > qsmm SD(n/qsmm ). But the last inequality is a consequence of equality (2.5).

Indeed,

SD(n)= SD(n)−n= SD
(
n
qm

)
+qsm−qsm−1

r∑
i=0

s1∑
i1=0

···
sm−1∑
im−1=0

2iqi11 ···qim−1
m−1

+qsmm SD
(
n
qsmm

)
−n> qsmm

(
SD

(
n
qm

)
− n
qm

)
= qsmm SD

(
n
qsmm

)
.

(2.10)

We arrive at the following result.

Theorem 2.5. A natural number n is graceful if and only if n = 4q where q is an

odd prime.

Recall that a positive integer m is called a perfect number if it is equal to the sum

of all its proper divisors (i.e., of all divisors of m except of the number m itself). It is

known (cf. [4, Theorem 5.10]) that every even perfect number is of the form 2k−1(2k−
1), where the number 2k−1 is prime. Thus, our theorem implies the following result.

Corollary 2.6. The only perfect graceful number is 28.
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