

GRACEFUL NUMBERS

KIRAN R. BHUTANI and ALEXANDER B. LEVIN

Received 14 May 2001

We construct a labeled graph $D(n)$ that reflects the structure of divisors of a given natural number n . We define the concept of graceful numbers in terms of this associated graph and find the general form of such a number. As a consequence, we determine which graceful numbers are perfect.

2000 Mathematics Subject Classification: 11B75, 05C78.

1. Introduction. In [2], Gallian presented a detailed survey of various types of graph labeling, the two best known being graceful and harmonious. Recall that a graph G with q edges is called graceful if one can label its vertices with distinct numbers from the set $\{0, 1, \dots, q\}$ and mark the edges with differences of the labels of the end vertices in such a way that the resulting edge labels are distinct. A number of interesting results on graceful and graceful-like labelings are obtained in [1, 3, 4] and some other works. In this note, we give a description of natural numbers whose associated graph of divisors satisfies certain graceful-like conditions. For any natural number n , we construct a labeled graph $D(n)$ that reflects the structure of divisors of n . We define the concept of graceful number in terms of this associated graph and find the general form of such a number. As a consequence, we determine which graceful numbers are perfect.

2. Main results. Given a natural number n one can generate a graph $D(n)$ that reflects the structure of divisors of n as follows. The vertices of the graph represent all the divisors of the number n , each vertex is labeled by a certain divisor. (In what follows, we refer to the vertex of the graph $D(n)$ with label k as the “vertex k .”) If r and s are two divisors of n and $r > s$, then there is an edge between the vertices s and r if and only if s divides r and the ratio r/s is a prime number. As in the theory of graceful graphs, we label such an edge by the difference $r - s$ of the labels of its vertices. In what follows, the sum of the labels of all edges of the graph $D(n)$ is denoted by $\overline{SD}(n)$ while $SD(n)$ denotes the sum of labels of all edges of $D(n)$ except the edges terminating at n . (Clearly, if $n = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ is the prime factorization of a natural number n , then $SD(n) = \overline{SD}(n) - \sum_{i=1}^k (n - n/p_i)$.)

EXAMPLE 2.1. It is easy to see that if $n = p^r$, where p is a prime number and r is any positive integer, then $\overline{SD}(n) = \sum_{i=1}^r (p^i - p^{i-1}) = p^r - 1$ and $SD(n) = \sum_{i=1}^{r-1} (p^i - p^{i-1}) = p^{r-1} - 1$, so that $SD(n) < n$. The graph $D(n)$ is shown in Figure 2.1.

FIGURE 2.1. The graph $D(p^r)$.

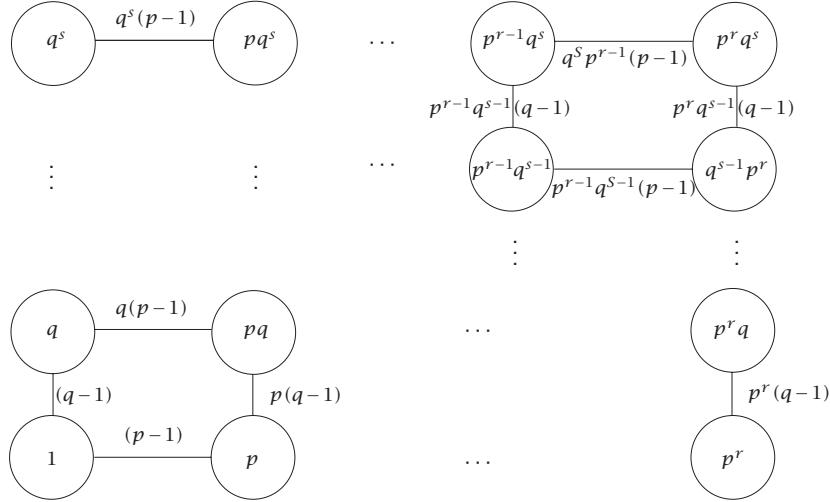
The following example shows that there are numbers n such that $SD(n) > n$, as well as numbers that satisfy the condition $SD(n) = n$.

EXAMPLE 2.2. Let $n = 24$ and $m = 12$. Then $SD(n) = (12-6) + (12-4) + (8-4) + (6-3) + (6-2) + (4-2) + (3-1) + (2-1) = 30 > n$ and $SD(m) = (6-3) + (6-2) + (4-2) + (3-1) + (2-1) = 12 = m$.

DEFINITION 2.3. A natural number n is called *graceful* if $SD(n) = n$.

In order to obtain the description of graceful numbers, we first find the value of $SD(n)$ when n is a product of two different prime numbers.

EXAMPLE 2.4. Let $n = p^r q^s$ where p and q are different prime numbers, $r \geq 1$, and $s \geq 1$. In this case the graph $D(n)$ is of the form

FIGURE 2.2. The graph $D(p^r q^s)$.

and $\overline{SD}(n) = \sum_{i=0}^r \sum_{j=1}^s (p^i q^j - p^i q^{j-1}) + \sum_{i=1}^r \sum_{j=0}^s (p^i q^j - p^{i-1} q^j) = \sum_{i=0}^r p^i (q^s - 1) + \sum_{j=0}^s q^j (p^r - 1)$ (the first sum corresponds to the differences of the consecutive divisors of n when the exponent of q decreases, and the second sum takes care about the differences of consecutive divisors of n when the exponent of p decreases). Thus,

$$\overline{SD}(n) = (q^s - 1) \sum_{i=0}^r p^i + (p^r - 1) \sum_{j=0}^s q^j = (q^s - 1) \frac{p^{r+1} - 1}{p - 1} + (p^r - 1) \frac{q^{s+1} - 1}{q - 1}, \quad (2.1)$$

so that

$$SD(n) = \overline{SD}(n) - \left[\left(n - \frac{n}{p} \right) + \left(n - \frac{n}{q} \right) \right]. \quad (2.2)$$

It follows from formulas (2.1) and (2.2) that a number $n = p^r q^s$ (p and q are prime, $r \geq 1$, and $s \geq 1$) is graceful if and only if $p = 2$ and $s = 1$, that is, $n = 4q$ for some odd prime number q .

Indeed, equality $SD(n) = n$ can hold only for even numbers n (if n is odd, then (2.1) shows that $SD(n)$ is even, whence $SD(n) \neq n$). If $n = 2^r q^s$, where $r \geq 2$, $s \geq 2$, then

$$\begin{aligned} SD(n) - n &= (2^r - 1) \sum_{i=0}^s q^i + (q^s - 1)(2^{r+1} - 1) - 2^{r+1} q^s + 2^{r-1} q^s + 2^r q^{s-1} - 2^r q^s \\ &> (2^{r-1} - 2) q^s + (2^{r+1} q^{s-1} - q^{s-1} - 2^{r+1}) + (2^r - 1) \sum_{i=0}^{s-2} q^i \\ &> 0, \end{aligned} \quad (2.3)$$

so that $SD(n) > n$. Finally, if $n = 2^r q$ ($r \geq 1$), then $SD(n) - n = (q - 1)(2^{r+1} - 1) + (2^r - 1)(q + 1) - 2^{r+1} q + 2^{r-1} q + 2^r - 2^r q = q(2^{r-1} - 2)$, so that $SD(2^r q) = 2^r q$ if and only if $r = 2$. Thus, for any two different prime numbers p and q , $p < q$, and for any two nonnegative integers r and s , the number $p^r q^s$ is graceful if and only if $p = 2$, $r = 2$, and $s = 1$.

Now, we generalize formula (2.1) to the case of arbitrary number n . More precisely, we show that if $n = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ is a prime decomposition of a positive integer n (p_1, \dots, p_k are different primes and r_1, \dots, r_k are positive integers), then

$$\overline{SD}(n) = \sum_{i=1}^k (p_i^{r_i} - 1) \prod_{1 \leq j \leq k, j \neq i} \left(\frac{p_j^{r_j+1} - 1}{p_j - 1} \right). \quad (2.4)$$

We proceed by induction on n . We have seen that the formula is true if n is a power of a prime number or a product of two powers of primes. In order to perform the step of induction, notice that

$$\overline{SD}(n) = \overline{SD}\left(\frac{n}{p_1}\right) + (p_1^{r_1} - p_1^{r_1-1}) \sum_{i_2=0}^{r_2} \cdots \sum_{i_k=0}^{r_k} p_2^{i_2} \cdots p_k^{i_k} + p_1^{r_1} \overline{SD}\left(\frac{n}{p_1^{r_1}}\right). \quad (2.5)$$

Applying the inductive hypothesis and taking into account that

$$\overline{SD}(n) = \sum_{i_2=0}^{r_2} \cdots \sum_{i_k=0}^{r_k} p_2^{i_2} \cdots p_k^{i_k} = \prod_{j=2}^k \sum_{i=0}^{r_j} p_j^i = \prod_{j=2}^k \left(\frac{(p_j^{r_j+1} - 1)}{(p_j - 1)} \right), \quad (2.6)$$

we obtain that

$$\begin{aligned} \overline{SD}(n) &= (p_1^{r_1-1} - 1) \prod_{j=2}^k \left(\frac{(p_j^{r_j+1} - 1)}{(p_j - 1)} \right) + \sum_{i=2}^k (p_i^{r_i} - 1) \left(\frac{(p_1^{r_1} - 1)}{(p_1 - 1)} \right) \prod_{2 \leq j \leq k, j \neq i} \left(\frac{(p_j^{r_j+1} - 1)}{(p_j - 1)} \right) \\ &\quad + (p_1^{r_1} - p_1^{r_1-1}) \prod_{j=2}^k \left(\frac{(p_j^{r_j+1} - 1)}{(p_j - 1)} \right) + p_1^{r_1} \sum_{i=2}^k (p_i^{r_i} - 1) \prod_{2 \leq j \leq k, j \neq i} \left(\frac{(p_j^{r_j+1} - 1)}{(p_j - 1)} \right) \end{aligned}$$

$$\begin{aligned}
&= (p_1^{r_1-1}) \prod_{j=2}^k \left(\frac{(p_j^{r_j+1}-1)}{(p_j-1)} \right) + \sum_{i=2}^k (p_i^{r_i}-1) \prod_{1 \leq j \leq k, j \neq i} \left(\frac{(p_j^{r_j+1}-1)}{(p_j-1)} \right) \\
&= \sum_{i=1}^k (p_i^{r_i}-1) \prod_{1 \leq j \leq k, j \neq i} \left(\frac{(p_j^{r_j+1}-1)}{(p_j-1)} \right), \tag{2.7}
\end{aligned}$$

so formula (2.4) is proved.

Now, formulas (2.2) and (2.4) imply that

$$SD(n) = \sum_{i=1}^k (p_i^{r_i}-1) \prod_{1 \leq j \leq k, j \neq i} \left(\frac{p_j^{r_j+1}-1}{p_j-1} \right) - \sum_{i=1}^k \left(n - \frac{n}{p_i} \right). \tag{2.8}$$

Formula (2.8) shows, in particular, that if a number n is odd, then $SD(n)$ is even (it is easily seen that both sums in the right side of the formula are even if n is odd). Therefore, every graceful number must be even, that is,

$$n = 2^r q_1^{s_1} \cdots q_m^{s_m} \tag{2.9}$$

for some odd primes q_1, \dots, q_m ($m \geq 1, s_i \geq 1$ for $i = 1, \dots, m$). As we have seen, if $m = 1$, then the number n is graceful if and only if $s_1 = 1$ and $r = 2$, that is, $n = 4q_1$. We show that if $m \geq 2$, then $SD(n) > n$, so the only graceful numbers are the numbers of the form $4q$ where q is an odd prime.

First of all, notice that $SD(2^r q_1^{s_1}) \geq 2^r q_1^{s_1}$ for $r \geq 1, s \geq 2$ (see Example 2.4) and $SD(2q_1 q_2) \geq 2q_1 q_2$ for any two different primes q_1 and q_2 (applying formula (2.1) we obtain that $SD(2q_1 q_2) = (q_1+1)(q_2+1) + 3(q_1-1)(q_2+1) + 3(q_2-1)(q_1+1) - 6q_1 q_2 + q_1 q_2 + 2q_1 + 2q_2 = 2q_1 q_2 + 3(q_1+q_2) - 5 > 2q_1 q_2$). Therefore, in order to prove that $SD(n) > n$ for any number n of the form (2.9) with $m \geq 2$, it is sufficient to prove that $SD(n) > q_m^{s_m} SD(n/q_m^{s_m})$. But the last inequality is a consequence of equality (2.5). Indeed,

$$\begin{aligned}
SD(n) &= \overline{SD}(n) - n = \overline{SD}\left(\frac{n}{q_m}\right) + q^{s_m} - q^{s_m-1} \sum_{i=0}^r \sum_{i_1=0}^{s_1} \cdots \sum_{i_{m-1}=0}^{s_{m-1}} 2^i q_1^{i_1} \cdots q_{m-1}^{i_{m-1}} \\
&\quad + a_m^{s_m} \overline{SD}\left(\frac{n}{q_m^{s_m}}\right) - n > q_m^{s_m} \left(\overline{SD}\left(\frac{n}{q_m}\right) - \frac{n}{q_m} \right) = q_m^{s_m} SD\left(\frac{n}{q_m^{s_m}}\right). \tag{2.10}
\end{aligned}$$

We arrive at the following result.

THEOREM 2.5. *A natural number n is graceful if and only if $n = 4q$ where q is an odd prime.*

Recall that a positive integer m is called a *perfect number* if it is equal to the sum of all its proper divisors (i.e., of all divisors of m except of the number m itself). It is known (cf. [4, Theorem 5.10]) that every even perfect number is of the form $2^{k-1}(2^k - 1)$, where the number $2^k - 1$ is prime. Thus, our theorem implies the following result.

COROLLARY 2.6. *The only perfect graceful number is 28.*

REFERENCES

- [1] R. W. Frucht, *Nearly graceful labelings of graphs*, Sci. Ser. A Math. Sci. (N.S.) **5** (1992/93), 47–59.
- [2] J. A. Gallian, *A dynamic survey of graph labeling*, Electron. J. Combin. **5** (1998), no. 1, Dynamic Survey 6, 1–43.
- [3] D. Moulton, *Graceful labelings of triangular snakes*, Ars Combin. **28** (1989), 3–13.
- [4] A. Rosa, *On certain valuations of the vertices of a graph*, Theory of Graphs (Internat. Sympos., Rome, 1966), Gordon and Breach, New York, 1967, pp. 349–355.

KIRAN R. BHUTANI: DEPARTMENT OF MATHEMATICS, THE CATHOLIC UNIVERSITY OF AMERICA, WASHINGTON, DC 20064, USA

E-mail address: bhutani@cua.edu

ALEXANDER B. LEVIN: DEPARTMENT OF MATHEMATICS, THE CATHOLIC UNIVERSITY OF AMERICA, WASHINGTON, DC 20064, USA

E-mail address: levin@cua.edu

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru