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TIME SERIES MODELLING OF THE KOBE-OSAKA
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A problem of great interest in monitoring a nuclear test ban treaty (NTBT) is related to
interpreting properly the differences between a waveform generated by a nuclear explo-
sion and that generated by an earthquake. With a view of comparing these two types of
waveforms, Singh (1992) developed a technique for identifying a model in time domain.
Fortunately this technique has been found useful in modelling the recordings of the killer
earthquake occurred in the Kobe-Osaka region of Japan at 5.46 am on 17 January, 1995.
The aim of the present study is to show how well the method for identifying a model (de-
veloped by Singh (1992)) can be used for describing the vibrations of the above mentioned
earthquake recorded at Charters Towers in Queensland, Australia.

2000 Mathematics Subject Classification: 62P05, 62M10.

1. Introduction. Many researchers have studied the structure of seismic records.
Most of these studies (with the exception of Tjostheim [3, 4] and Dargahi-Noubery
et al. [2]) have been carried out in the frequency domain and they have been mainly
concerned with the properties of their spectra.

The purpose of the present study is to model the recordings of the earthquake
recently occurred at the Kobe-Osaka region of Japan on 17 January, 1995, in time
domain, that is, to fit an autoregressive moving average model to the seismogram (see
Figure 1.1) recorded at Charters Towers, Queensland, Australia.

One of the advantages of fitting a parametric model is that if a good model can be
fitted, the process can be characterized by numerical values of a few parameters as
opposed to the conjectural interpretation of the plots of spectra. Other advantages of
the parametric modelling a time series in general have been highlighted by Box and
Jenkins [1].

It has been found (see Tjostheim [3, 4], Dargahi-Noubary et al. [2]) that the lower-
order autoregressive (AR) models are often appropriate for short period seismograms.
Let Y (t) be a wide-sense-stationary (wss) process in discrete time. The process is said
to be an AR process of order p (abbreviated AR(p)) if Y (t) satisfies the difference
equation

@ B)Y (t) = &(t), (1.1)

where @(B) = 1-@1B— @2B?—---—@,B? is a polynomial in B of degree p and is
called the AR operator of order p, the @’s are constant coefficients; B is the back-
ward shift operator defined by B/Y (t) = Y(t — j); £(t) is a wss process such that
E{e(t)e(s)} = 0255, where &5 is the Kronecker delta. Furthermore, it is assumed
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FIGURE 1.1. Seismogram of the Kobe earthquake of 17 January, 1995
recorded at Charters Towers.

that E{Y (t)e(s)} =0, for s > t. Obviously, Y (t) has zero mean (an assumption valid
for seismograms). Notice that model (1.1) contains p + 1 parameters, namely, the @;’s,
i=1,...,p and 0. Once the order p is determined, the standard methods for esti-
mating parameters can be used.

It is well known that a seismogram recorded over its entire range is zero-mean
stationary in some sections while it is nonstationary-in-variance in others.

It may be noticed that the pattern of the series in Figure 1.1 is of this type. We
divide the whole seismogram into three subseries and denote them by X (t), X»>(t),
and X3(t) as shown in Figure 1.1. Thus we have three series out of the seismogram
in Figure 1.1. Then a model of the following type may be fitted to the seismogram,
namely

1, ifi=j,
01

3
Z(t) = > 8iXi(b), Oij = <[ (1.2)
j=1

otherwise,

(see Figure 1.1). Series X, (t), X»>(t), and X3(t) consist of 670, 535, and 1051 observa-
tions, respectively, and each is assumed to follow an ARMA (p,0) process.

Now, the problem is to identify the model for each of these series and then to
estimate the parameters.

Before discussing these problems in Sections 3 and 4, we review briefly the re-
lated work done previously in time domain, for information and ready reference to
the reader.

2. Short review of previous studies of seismograms in time domain. Tjostheim
[3, 4] considered the AR model defined by

14
X(t) =D o ()X(t—j) =U(t), (2.1)

j=1

where X (t) denotes the seismic noise recorded at NORSAR, E(U(t)) =0, Var(U(t)) =
o2 (t). It may be noted in model (2.1) that the coefficients «;(t), j=1,...,p, and the
residual variance o (t) are assumed to be functions of t, though without any specific
forms. They were estimated using two different samples and shown to be significantly
different from the two samples indicating their time dependence.
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On the other hand, Dargahi-Noubary et al. [2] considered a model of the type

14
X() = > o;(k)X(t—j)=U(1), (2.2)
Jj=1

where «; (k) = (—1)1(§)exp(—jk), j=1,2,...,p,and U(t) ~ N(0,02).

Thus model (2.2) consists of only two parameters, that is, k and (75. The maximum
likelihood estimators of these parameters have been obtained.

However, in neither of these studies, nothing seems to have taken into account the
fact that the series has increasing (or decreasing) variance in a certain range of the
series.

It is this problem which has been addressed in this paper. A realistic approach is
suggested in the following sections with an application to the Kobe-Osaka earthquake
recordings.

3. AR models with time-dependent error variance. Let (Q2,,p) denote a probabil-
ity space and let £(-) = £(Q, B, p) denote the space of all real-valued random variables
on (Q, B, p) with zero mean and finite second-order moments. The space £(-) is called
the Hilbert space if the inner product and norm are defined, respectively, by

Em=EEn, lEI*>=EE), & neZ(). (3.1)

Consider now a zero-mean AR(P) model with time-dependent error variance de-
fined by

PB)X(t) =w(t), (3.2)

where «(B) is the AR operator and w(t) € £(-) is a white-noise with zero mean and
time-dependent variance E{w?(t)} = 02 (t) such that 0 < k < E{w?(t)} < K, where k
and K are finite positive constants. Model (2.1) is stationary if, (i) all roots of equation
o (x) = 0 lie outside the unit circle and (ii) the noise process w (t) is stationary, that
is, E{w?(t)} = 02, a constant. It follows that E(X(t)) = 0 and EX?(t) < co.

Put o2 (t) = Hy (t), where H, (t) is a positive function defined over the interval
[t; =t <t,].Itis assumed that Hy, (t) is bounded and bounded away from zero, that
is, 0 < k < Hy, (t) <K, where k < K are positive constants;

E[X(t)w(s)] =0 fort<s, t,s € [ty,t2]. (3.3)

Furthermore, we are interested in the family for which H,, (t) is a parametric func-
tion of t. For all positive integer values of ¢, if the same parametric function is used,
the class of possible functions will be restricted to the family such that H,, (t) > 0.

REMARK 3.1. It is interesting to note the relationship between Var X; = Hx(t) and
VarW; = H,, (t) in the interval [t;,t>] as shown below: for convenience let t; = 0,
t, = t, then for an AR(1), it can be seen that

2t-1
Hx(t) = @*'Hx(0) + Hy (£) + >, @* ' Hy (t—j). (3.4)
j=1
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Notice that for |¢p| < 1, and t — oo, Hx(t) will depend on the last two terms in (3.2)
and hence the form of Hy (t) will be similar to that of H,, (t). For instance if H,, (t) is
a linear function of t, Hy (t) will also be a linear function of t, approximately.

Let X*(t) be a uniquely determined bounded solution of (3.2) and let pu(X*(t))
(resp., u(w(t))) denote a closed linear subspace in £(-) spanned by all the random
variables X*(t) (resp., w(t)). Similarly, let ¥ (X*(t)) (resp., pu-(X*(t))) denote the
closed linear subspace in £(-) spanned by all variables X*(t), t < T (resp., w(t),
t < T). Suppose that Y*(t) is a uniquely determined stationary solution to (1.1), then
there exists a uniquely determined bounded operator S(t) such that

S(t) - u(Y*(t)) — u(X*(1)) (3.5)
with a bounded inverse S1(t) : u(X*(t)) — u(Y*(t)) so that
X*(t)=S(t)Y*(t) Vt. (3.6)

THEOREM 3.2. Let X*(t) and Y*(t) be defined as above. Then it follows from (3.6)
that
i) EX*(t)) =S(HEY*(t);
(i) Var(X*(t)) =S2(t)VarY*(t);
(iil) px(t,s)=pylt—sl.

The proof is simple and straightforward.

REMARK 3.3. It may be noticed from Theorem 3.2(iii) that the correlation structure
of X (t) is the same as that of the zero-mean stationary process {Y (t)}; although X (t)
is zero-mean nonstationary-in-variance.

It is this common characteristic of the two processes which has been exploited in
the sequel for the identification of both X (t) and Y (t) as well as the identification of
the covariance structure of the white-noise w (t) in (3.2).

For example, let {Y (t)} be a zero-mean stationary AR(2) process defined by

Y() =@ Y(t—1)+@aY(t-2)+&(t); &(t) ~N(0,02). (3.7)

Under the transformation X (t) = S(t)Y (t), we have

X(t) = @1(OX (-1 +@2(t) X (t=2) +w (1), (3.8)
where
_ @S _ @28() _
1(t) = St_1)’ 2= S ) w(t) =S(t)e(t). (3.9

In general, it can be seen that
}imcpi(t) — @, i=1,2. (3.10)
In particular, let S(t) = exp(« t), then we have

X() = @i X(t—-1)+@iX(t-2)+w(t), (3.11)
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where
Pl =@ie®,  @F=@ee’,
(3.12)
H, (t) = Var (w(t)) = g2e?*t = e, say,
where
B=0?f  c=2a« (3.13)
EXAMPLE 3.4. Take ; = —0.55, > =0.35, B =1, x=0.02, then
Y(t) =—-0.55Y(t—1)+0.35Y(t-2) +&(t), (3.14)
S(t) = exp(0.02t), (3.15)
X(t) =exp(0.02t)Y (1), (3.16)
and hence
X(t)=-0.56X(t—1)+0.36X(t-2)+w(t), (3.17)
where
w(t) = exp(0.02t)e(t),  Hy(t) = exp(0.04t) 2. (3.18)

A sample {Y(1),...,Y(200)} of 200 values was generated using (3.14) on VAX C and
then a sample {X(1),...,X(200)} was generated using (3.16). These samples along
with their respective ACF’s and PACF’s are plotted in Figures 3.1a and 3.1b.

3.1. Inference and conclusions. It may be noticed from Figure 3.1 that
(i) the series Y (t) is stationary as expected;
(i) the series X (t) under the transformation (3.16) is a naturally exponentially
increasing series since the variance of the white-noise w(t) is assumed to be
an exponential function of t;
(iii) the ACF’s and PACF’s of both Y (f) and X(t) are the same as expected (see
Theorem 3.2), except for some sampling fluctuations;
(iv) both ACF and PACF of X (t) (and/or Y (t)) suggest that the underlying station-
ary process Y (t) is an AR(2) and the oscillatory nature of the ACF of either
X(t) or Y(t), that one of the coefficients of the process Y (t), is negative.

4. Preliminary identification. Given a zero-mean and nonstationary-in-variance
series such as X(t) in the preceding section, the following steps are suggested to
identify the process:

(1) plot the series, its ACF and PACF,

(2) if the plot of the series is exponentially increasing (or decreasing) on both sides
of the mean then it may be argued that the error-variance is an exponential
function of time t with positive (or negative) exponent. Similar interpretation
may be given to the series if it is linearly increasing (or decreasing),

(3) the ACF and PACF together would suggest the order of the underlying stationary
process such as the Y (t) in the above example,
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(a) Plots of Y(t), its ACF and PACF. (b) Plots of X(t), its ACF and PACF.
FIGURE 3.1

(4) thus having identified the order of the AR process that can be fitted to the
given X (t) series and the covariance structure of the white-noise, any standard
procedure of estimation such as the maximum likelihood (ML) can be used to
estimate the parameters in the model and the covariance function of the white-
noise.

4.1. Advantages. One of the advantages of the above procedure is that it enables
us to estimate the variance of the white-noise and the coefficients of the underlying
stationary process which is referred to as Y (¢) in the preceding example. For instance,
let Y(t) be the underlying stationary AR(1) defined by

Y(t)=@Y(t—1)+&, & ~N(0,07), 4.1)
and let
X(t)=S(t)Y(t), 4.2)

then

X)) =@pM®X(t-1)+w(t), (4.3)
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where

pS(t)
S(t-1)°

p(t) = w(t) =S(t)e(t). (4.4)

Assuming S(t) = exp(«xt), we have @ (t) = pe® = p*
Hy, (t) = Varw(t) = exp(2at)o? = Bexp(ct), 4.5)

where B = 0?2 and ¢ = 2. Given X(1),...,X(n), the ML method will yield the estima-
tors of @*, B and thus enabling us to estimate o2, the coefficients of models Y () and
X(t) in (4.1) and (4.3), respectively.

5. Fitting models to the Kobe-Osaka seismic recordings. The seismogram of the
Kobe earthquake recorded at Charters Towers is given in Figure 1.1. The graph dis-
plays the vertical component of the ground displacement (in nm) versus time in min-
utes. The total number of observations recorded were 2256. This entire set of ob-
servations has been divided into three main parts. We denote them by X, (t), X»(t),
and X3(t) series as shown in Figure 1.1. These series consist of 670, 535, and 1051
observations, respectively.

5.1. Modelling of series X, (t). First of all, we study and model series X, (t) due to
its unusual appearance. This consists of 535 values and it is displayed in Figure 5.1.
The ACF and PACF of X, (t) are shown in Figure 5.2.

INFERENCE. (i) From Figure 5.3, we infer that the variance structure of the series
X (t) is time-dependent and seems to be an exponential function of ¢t multiplied by
a constant which may be taken as an error-variance of the underlying process Y (t).
(See Section 4.)

(ii) Both ACF and PACF suggest that the representative process is pure autoregres-
sive process of order three (R(3)).

Based on this preliminary inference, we postulate the underlying stationary process

of the type

Yo(t) = @1Yo(t —1) + @Yo (t —2) + @3Ya(t —3) + &3(), (5.1)

where &3(t) ~ N(O,Uf), and select S(t) = exp(«t).
Put

Xo(t) = exp(axt)Ya(t). (5.2)
Then the model for X;(t) may be defined by
Xo(t) =@r1(OXo(t=1)+@2(0) Xo(t=2) +@3(E) X3(t=3) +w(t), (5.3)
where

P1(t) = @f =@ie®,  @a(t) = @3 = @2e®%,  3(t) = @ = Pz,

(5.4)
w(t) =exp(at)e(t),
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then
Xo(t) = QFX1(t—1) + @iXo(t—2) + @i X3(t—3) +w(t),
Var (w(t)) = Hy (t) = 0f exp(2at) = Bexp(2at), (5.5)
Var (Ya(t)) = o = f(@1,@2,@3)07, a constant,
where

a2 @3(@1+@3) - (1-@2)]

f(@1,p2,p3) = K )
K={@{ + Q305+ 20190293 + (@3 + 93+ Q10203 - 1) (1 - @2) (>.6)
@192+ @3+ QT3 — @3) (@1 +@s3) ]
For any fixed value of ¢,
Var (X (t)) = exp(2at) Var (Y (t)). (5.7)

For the given values of series X»(t) (available from the authors on request), the esti-
mates @, @5, @3, B= G2, and & were obtained using the maximum likelihood (ML)
method (see the appendix for details). The estimates are

@F =230580, @F =-1.78829,  F = —0.45799,

. (5.8)
B=02=321187, & =0.0034.

Thus the estimated model for X, (t) series is
Xo(t) =2306X,(t—1) —1.788X»(t —1) —0.458X3(t — 1),
Var (X» (t) = exp (2&t) Var (Y (t))), at fixed t, (5.9)
Var (Y (1)) = Bf (91, @2, @3),
where
Gr=@Pfe ¥ Dr=Pre Py =Pie
Var (1w (t)) = Bexp (2&t), at fixed t

(5.10)

The estimated series X5 (t), its ACF, and PACF are plotted in Figures 5.3, 5.4a, and
5.4b, respectively.

INFERENCE 5.1. On comparing the plots of the original series X (t), its ACF, and
PACF in Figures 5.1 and 5.2 with the corresponding plots of the estimated series X» (),
its ACF and PACF in Figures 5.3, 5.4a, and 5.4b, one may note the striking similarity.

Thus based on (i) and (ii) above we may infer that the modelling of series X»(t),
following the procedures outlined in Sections 3 and 4, is more than satisfactory.

In the following subsection, we consider the modelling series X3(t).

5.2. Modelling of series X3(t). The series of X3(t) consisting of 1051 observations
is plotted in Figure 5.5. Its ACF and PACF are plotted in Figures 5.6a and 5.6b, respec-
tively.
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From Figures 5.5 and 5.6, it appears that the series in question represents a pure
AR(4) process. Consequently, using ITSM, we fitted three models to X3(t), namely,
AR(3), AR(4), and AR(5) and obtained the respective AICC-values along with the cor-
responding maximum likelihood estimates. The AICC-values are shown in Table 5.1.

Through the AICC-value corresponding to AR(5) model is the minimal, however, in
view of the parsimony and the PACF, we chose AR(4), namely,

X3(t) =2.670x (t—-1)—-2.81x(t-2)+1.418x(t-3) —0.328x (t —4) +&(¢t). (5.11)

The series X (t) can be analyzed similarly.

TABLE 5.1
Model AICC-value
AR(3) 0.188909E + 05
AR(4) 0.177846E +05
AR(5) 0.177086E +05

Appendix

Estimation of parameters. Consider a pure zero-mean AR(3) model defined by
X(t) =1 X(t-1)+@2X(t-1) +@3X(t-3) +w(t), (A.1)

where EX(t) = 0, EX?(t) < o, and E(w (t)w(s)) = 815025 (t), &;s is the Kronecker
delta. Furthermore, it is assumed that E(X;w (s)) = 0 for s > t and the process X (t) is
nonstationary in variance, that is, 05, (t) is a function of time; however, it is assumed

to be bounded and bounded away from zero.
Defining X(1) = (X(), X(t~1),X(t-2))",w(t) = (w(®),0,0)", and @ = | 1 ¥
(3.2) can be expressed as a 3-dimensional nonstationary-in-variance vector AR(1) pro-

cess, that is,
X(t)-dX(t-1) =w(l). (A.2)

Given {((1),{((2), .. ’{((”)' it can be shown easily (see Tyssedal and Tjostheim [5])
that the weighted least squares estimate of ® is given by

A XOxXTe-D] o x@-DxXTe-17"
B ZH—m{” ZH—m] B

where Hy, (t) = 02 (t). If the W (t) are assumed normally distributed, then ® is asymp-
totically equivalent to the maximum likelihood estimate of ®. The nonweighed least
square estimate of ® is given by

M=

n -1
o*=n! )N((t))N{T(t—l)[nIZ)N((t—l))N(T(t—l)} : (A4)
t=1

t

1
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Given w(1),w(2),...,w(n), the likelihood function is

= (2m) "2 H Hy (1)) ”Zexp[ Zw (1) (Hw (1))~ } (A.5)

t 1

Assuming H,, (t) = fexp(xt), 0 < x < 1, B > 0, the log likelihood is
n n 1 n
Inx = K——ZlnB——ch —52 2B te . (A.6)
t=1 t=1 t=1

Replacing w(t) by (X(t) — 1 X(t —1) — @2 X(t —2) — @3X(t —3)) in (A.6) and then,
differentiating with respect to & and S we obtain

S

X()-@iX(t-1)—@iX(t-2)—@iX(t-3))e %, (A7)

o~
m
M=

~

—

t=
B=n"'> (X()-@fX(t-1)-@iX(t—2) - @i X(t—3)) e ™, (A8)

respectively, where @7}, @4, and @] are the preliminary estimates of @1, @2, and @3
obtained from (A.4) for known X (t), X(t—1), and X(t —2). For a convergent solution
we suggest the following steps:
(1) choose an initial value of & between 0 and 1, say, &p. Using &o, Bo can be
estimated from (A.8);
(2) using Bo, « can be re-estimated from (A.7) and then S is re-estimated from (A.8)
using a new estimate &;
(3) steps 1 and 2 are repeated until converging estimates of « and S for the pre-
liminary estimates ®*;
(4) ®* is re-estimated from (A.3) using these convergent estimates of « and f3;
(5) steps 1 to 4 are repeated until the convergent estimates of ®*, «, and S are
obtained.
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allowing more precise analysis and synthesis, in order to
produce new vital products and services. Bifurcation theory,
dynamical systems and chaos started to be part of the
mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Prob-
lems in Engineering aims to provide a picture of the impor-
tance of the bifurcation theory, relating it with nonlinear
and chaotic dynamics for natural and engineered systems.
Ideas of how this dynamics can be captured through precisely
tailored real and numerical experiments and understanding
by the combination of specific tools that associate dynamical
system theory and geometric tools in a very clever, sophis-
ticated, and at the same time simple and unique analytical
environment are the subject of this issue, allowing new
methods to design high-precision devices and equipment.
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