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Ionizing shock waves in magnetofluiddynamics occur when the coefficient of electrical
conductivity is very small ahead of the shock and very large behind it. For planner motion
of plasma, the structure of such shock waves are stated in terms of a system of four-
dimensional equations. In this paper, we show that for the above electrical conductivity as
well as for limiting cases, that is, when this coefficient is zero ahead of the shock and/or
is infinity behind it, ionizing fast, slow, switch-on and switch-off shocks admit structure.
This means that physically these shocks occur.
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1. Introduction. An ionizing shock is defined as a compressive wave which propa-
gates into a nonionized, nonconducting gas, ionizes it, and thus makes the post-shock
gas electrically conducting and capable of interacting with an electromagnetic field.
Thus in this type of shock wave the pre-shock of the gas is nonconducting and the
post-shock state is ionized and a good electrical conductor. Thus, this type of shock
wave is considered as a system of magnetohydrodynamics (MHD) or magnetofluid-
dynamics (MFD).

From the mathematical point of view, shock waves are discontinuous weak solu-
tions of conservation laws. In order to distinguish physical shock wave solutions of
conservation laws, among many of them, one has to apply some criteria. The most
widely accepted one is the structure or viscous profile criterion [1, 19, 24, 28].

The question of existence of structure for different types of MFD shock waves in
planar motion has been considered by Germain [10], Kulikovskii and Lyubimov [19],
Cabannes [1], Conley and Smoller [4, 5], and Mischaikow and Hatori [20]. According
to their work, the shock layer equations in MFD is stated in terms of the following
four-dimensional system of ordinary differential equations, which is taken from [1]

du 1 5
(A1+2ul)dx—mu+p+2tu P,

dv
o =mv —uHyH, — Py,

(1.1)
dT 1 1
AE = m[e— E(u2 +v2)] - EuH}Z, +uvHH, +uP+vP, —E.H, - C,
_,dH,

(o

A =E,+puuH, —uvHy.
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Here u > 0 is an electrical constant, (1, v) is the velocity vector of the fluid, ¢ is the
internal energy, p and T are the pressure and the temperature, respectively. The vec-
tor (Hy,H,) is the magnetic field in the xy-plane, and E; is the electric field in the
direction of z-axis, where H, and E, are nonnegative constants. This system of equa-
tions contains four dissipation coefficients; the two coefficients of viscosities A; and
L1, the coefficient of thermal conductivity A and the coefficient of electrical conductiv-
ity 0. These coefficients are nonnegative functions of absolute temperature T. Finally,
m, P, P;, and C denote constants of integration. For more details and derivation of
these equations the reader is referred to [1].

Now the structure problem for MFD shocks is the above four simultaneous first-
order nonlinear differential equations must be integrated between equilibrium points.
This problem has been studied before by many authors, when the dissipation coeffi-
cients are continuous functions of T [4, 5, 7, 10, 11, 13, 14, 20]. We will describe these
works in more details in Section 2. However, in the case of ionizing shock, the electri-
cal conductivity of the gas is assumed to be zero (or very small) in the pre-shock gas
and it continues to zero (or very small) until a value T is reached by the temperature.
At this point in the shock structure the electrical conductivity jumps to infinity (or a
high value) which remains the same through the remainder of the shock wave. The
analogy with the ignition temperature in flame and detonation problems is evident
[9, 12, 26, 27, 29]. In other words, we have

o (T) forT<T,
(T) = (1.2)

0>(T) forT>T,

where 0 < 07(T) < 1 < 02(T) < o, and temperature T is given and is assumed to
have a value between its upstream and downstream value. We may call T the ionizing
temperature [1, 2, 12, 18, 25].

The structure problem for ionizing shock wave for the case o, = 0 and 0> > 0 has
been studied by Kulikovskil and Lyubimov, when the gas is perfect and Hy = p; =
A1 =0 or Hy =y = A =0 [18]. Also this problem for perfect gas and o7 =0, 0 > 0
is studied by Chu, when Hy, = A = 0 (see [2]). This leaves open the question of the
existence of structure of ionizing shock waves in planar motion when H, + 0 and
none of the viscosity parameters is zero. This general case is studied in this paper.

This paper is organized as follows, in Section 2 we make some observations related
to the rest (equilibrium) points of system (1.1) and introduce the problem in detail. In
Section 3, we find some general results on the orbits of autonomous system of ordi-
nary differential equations related to the problem. In Section 4, we show the existence
of structures when o (T) =0 and 0»(T) = «. The existence of structures in the case
01(T) = 0 and 0> (T) is very high, will be considered in Section 5. In Section 6, we
consider the problem for the case 0 < 01(T) < 1 < 02(T) < oo.

For an excellent description, experimental, and applications of ionizing shocks the
reader is referred to [20, Chapter 4] and [22, Section 5.15].

2. Hypotheses, rest points, and the problem. As we pointed out before, a hetero-
clinic orbit of system (1.1) is called a structure for an MFD shock wave. In other words,
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a structure for an MFD shock wave is a complete orbit of (1.1) connecting two rest
points. Thus in the first step we must know the rest points of (1.1). In order to take
advantage of some results from previous works in [4, 5, 13], we replace A + 21, X,
Hy, P, u1,v—=P1,Hy, A &, C, E;, and o~ tby u, t, x2, J, 1, x1, 0, k, e, E, €, and v. Also,
without loss of generality, we may assume y = m = 1, as m is the mass quantity and
u is an electrical quantity. Then from u = mV [1], we obtain u = v, where V = p~!
and p is the density of the fluid. In this way, (1.1) can be written as

. 1
Vv = Ex§+V—J+70(V,T) =:G1(u),

Hx1 =x1-0x2 =:Ga2(u),
. ) (2.1)
kT = *E(X%*26X1X2+Vx%)*EXZ*EVZ‘FJV*E‘FE(V,T) =:G3(u),

VX = —0X1+VXo+&=:Gys(11),

where u = (V,x;,T,x2)T and u,u, k, and v are functions of T. Notice that for J <0,
this system has no rest point. Hence we assume that J > 0. Also note that 6 > 0 and
e=0.

Let S(V,T) be the entropy of the system. Following the previous works in [4, 5, 11,
13, 14, 15, 16, 21], we consider a general form for thermodynamic state functions
(instead of giving a specific expression) and we assume that the functions p(V,T),
e(V,T), and S(V,T) satisfy the following hypotheses.

(Hy) If V, T > 0, then p,e, and S are positive.

(H) For fixed T > 0, p(V,T) — 0 as V — 0.

(H3) Given K,Vy > 0, there exists Tp > 0 such thatif 0 <V <V and T > Ty, then
e(V,T)>K.

(Hy) On any interval 0 <V <V, S(V,T) — 0 uniformly in V as T — 0.

(Hs) If we consider p as a function of V and S, then p, <0, py, > 0 and ps > 0. As
an alternative to Hy4, we could assume

(H}) The quantities Sy (= pr) and Sy are positive whenever V,T > 0, and for any
fixed V, S(V,T) converges to a limit independent of V as T — 0.

These hypotheses are fairly mild, and have clear thermodynamic interpretations,
(see [24, page 516] and [23, pages 125-32]).

We will not use all of these hypotheses directly, but we will take advantage of some
results based on them from previous works in [4, 5, 13], specially we will assume the
existence of the rest points which is based on the above hypotheses as follows.

Let O < u,u1,k,v < o. For fixed J > 0, 6 > 0, and € > 0, there are two numbers
Ey > E; such that for E > Ej system (2.1) admits no rest point at all. For E < E; it
admits precisely four rest points, two of these rest points are located in the region
V > 62, and the other two are located in the region 0 < V < 2. For E; < E < Ey, this
system admits two rest points, and either both of them lie in V < §2 or both of them
liein V > 82 [4, 5, 11, 13, 20]. Hereafter, we assume that system (2.1) admits four rest
points. We denote them by

u; = (Vi,x14, Ti, x2i), (2.2)
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0 < i < 3, which are ordered by increasing density. Here (V;,T;), for 0 <i < 3, is a
solution of algebraic equations

Lewos)y2iv_jipwv,m -0,
2

) . (2.3)
552(\/—62)’1 - §V2+JV—E+e(V,T) =0,

and x1; = —€6(V; —6%) Y and xp; = —(V; —862) L.
If 0 <y, u,k,v <o, e=0,J>0,and 6 > 0, then for negative large value of E
system (2.1) admits four rest points

w; = (Vi, %14, Ti, X21), 0<i<3. (2.4)

Again these rest points are ordered by increasing of density. For i = 0,3, @; =
(V;,0,T:,0), where (V;,T;) is a solution of (2.2) corresponding to € = 0. Moreover for
i=1,2, we have 1; = (62,0%»;,Ti,%2;)T, where (T;,X»i), i = 1,2, is a solution of the
system of equations,

e(8%,T) - %54”52 —-E=0, %x% +6%—J+p(6%,T)=0. (2.5)
Finally, if 6 = 0, then u; and u3 do not exist, and 1 and ©; may exist. For more details
about the rest points, the reader is referred to [13].

As we mentioned before, the existence of a heteroclinic orbit u; — u; corresponds
to the existence of structure for the shock wave between the two states u; and u;.
This means that, this shock occurs physically. It is shown that if such a heteroclinic
orbit exists, then i < j. In the following, we explain the concept of different shock
waves which may occur.

Shock wave between 1y and u; (1, and u3) is called fast (resp., slow) shock. Phys-
ically, this means upstream and downstream states of the shock is super-Alfvénic
(resp., sub-Alfvénic). Shock wave between u; and u;, i = 0,1 and j = 2,3, is called
intermediate shock. The downstream state of this shock is sub-Alfvénic and its up-
stream is super-Alfvénic.

Shock wave between 11y and i, (as well as 71y and 1i») is called switch-on shock,
and shock wave between 11> and 3 (as well as 117 and 13) is called switch-off shock.
This means that 1 is super-Alfvénic, %, and 7, are Alfvénic and 3 is sub-Alfvénic
[19, 28].

It is known that for bounded and continuous functions of u; (T), u(T), k(T), and
v (T) fast, slow, switch-on, and switch-off shocks always exist [4, 5, 9, 10, 12]. However,
existence of intermediate shocks depend on the values of the above four viscosities
[5, 13, 21]. In the present paper, we are concerned with the existence of the ionizing
shocks of the above shocks except intermediate shocks, which may be considered in
a future work.

3. Some theorems in ODE. In this section, we present some existence theorems
which will be used as main tools in the next section.
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Consider the autonomous system of ODEs

% = f(x), x=(x1,x2,...,xn)", 3.1)
on R", where f is smooth. We denote by x - t the value of the solution of (3.1) at time
t which is x initially. Thus this solution is uniquely defined on an open interval of t
containing origin and assumed to be maximal.

The set S € R™ is called invariant with respect to (3.1)if x-t € S, for all t € R and
x € S. By an orbit we mean a solution of (3.1), and by a complete orbit we mean an
orbit which is defined for all values of t € R. We say that the orbit y(t) is running
from x( (or running to x1) if y(t) is defined for t <0 (or t > 0) and lim;_. .y (t) = xo
(or limy_ o y(t) = x1). If y(t) is running from x( to x; and x; # X, then this orbit is
called a heteroclinic orbit.

System (3.1) is called gradient-like in the open set U C R", if there is a continuous
real-valued function h on U which is strictly increasing on each nonconstant solution
of (3.1), lying in U, [3, 6].

The w-limit (x-limit) set of the orbit x - t is the set of limit points of sequences
X - t, where t,, goes to +oo(—o0). If x - t is a complete bounded orbit, then its w-limit
set and «-limit set are nonempty, closed, connected, and invariant. In the case of a
gradient-like system, the restriction of h (the gradient-like function) to each of this
sets is constant. Therefore each of them consists of rest points [3, 24].

It is known that, the w-limit set and «-limit set are nonempty and connected if x - t
is bounded. In the case of gradient-like flows, the restriction of h to any of these sets
is constant. Therefore each of these sets consists of a rest point. For more details the
reader is referred to [3, 6, 22].

The following three theorems are modifications of [13, Theorems 2.1.1 and 2.1.2].

THEOREM 3.1. Suppose that f in (3.1) is locally Lipschitz in a neighborhood of the
closure of an open bounded set D which is homomorphic to the semisphere {x € R" :
x| <1, x5, > 0}, and (3.1) is gradient-like with respect to a real-valued function, h in
D. Moreover the following conditions hold.

(C1) The set {x € D : h(x) = c} corresponds to the set {x € R": |x| <1, x, = c}
under the homomorphism, for all c € [0,1].

(C») The single point {x € D : h(x) = 1} which is denoted by X, is a rest point, and
this is the only rest point of (3.1) in D.

(C3) LetF={x €0D:h(x) >0}.Ifp € F\{X} thenp -t & D for small positive t and
p-t & oD for small |t| = 0.

(C4) Forp € 0D\F, p-t € D, fort > 0 and small.

Then there is a point p € 0D\F such that p - t is running to X.

PROOF. LetE=0D\FandFE ={x €E:x-(0,00) c D}.WeclaimthatE = @.IfE = @,
then for p € E there is a unique t(p) = 0 such that p - t(p) € F. Now, define ¢ : F —
F\{x} by ¢(p) = p-t(p). From continuous dependence of the solution with respect
to initial conditions and uniqueness of solution it follows that ¢ is a homomorphism
from E to F\{x}. This is impossible as E is closed and F\{X} is not closed. Thus
E + @.Let x € E. Then x - t is defined for all t > 0 and is lying in D. Since system (3.1)
is gradient-like, the w-limit set of x - t must be {X}. This completes the proof. O
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For more details of the above proof the reader is referred to the proof of [13, Theo-
rem 2.1.1].

THEOREM 3.2. Suppose that f and D are the same as in Theorem 3.1, and system
(3.1) is gradient-like with respect to a real-valued function g in D. Moreover, the follow-
ing conditions hold.

(C}) The set {x € D:g(x) =1-c} corresponds to the set {x e R": |x| <1, x, = ¢}
for 0 < ¢ < 1 under homomorphism.

(Ch) The set {x € D : g(x) = 0} which consists of a single point, say X, is a rest point
of (3.1), and X is the only rest point of (3.1) in D.

(C) Let F={x €0D:g(x) < 1}. For p € F\{X}, p-t &€ D for small positive t and
p-t & 0D for |t] # 0 and small.

(C,) Forp € 0D\F,p-t €D fort <0 and |t| small.

Then for p € 0D\F we must havelim; . p -t = X.

PROOEF. Since f is Lipschitz on D and the flow cannot leave D as t decreases, p - t
must be defined for all p € 9D\F and t < 0 and lying in D. Since o-limit set of p -t
consists of a rest point, lim;_._ p -t = X. O

As a modification of [13, Theorem 2.1.2] we have the following theorem.

THEOREM 3.3. Let f, D, h, X, and F be the same as in Theorem 3.1. Moreover, the
following conditions hold.

(CY) The same as condition (C;) in Theorem 3.1.

(CY) The same as condition (C) in Theorem 3.1.

(CY) If p € F\{X}, thenp -t & 0D for |t| 0 and small.

(C))IfpeF\{x}andp-t D fort > 0 and small, thenp -t ¢ D for t <0 and |t| small.

(CY) Thesetl ={p€dD:p-teD fort >0 and small} is disconnected.

(C§) Let E=0D\F.Ifp €E, thenp -t € D fort > 0 and small.

(CY) The connected set E intersects at least with two components of I.

Then there is xo € E such that lim;_..xq -t = X.

PROOF. We claim that the set N = {x € E: x - (0,0) C D} is nonempty. To see this
suppose N = . Then for p € E, there is t(p) > 0 such that p - t(p) €I, p-t € D for
O<t<t(p)andp-t¢ D fort(p)<tandt—t(p)small (condition (C})).

Now, define @ : E — I by @ (p) = p - t(p). Since the orbit p - t for p € E intersects 0D
transversely, @ must be continuous and since E is connected @ (E) must be connected.
On the other hand for p € InE we have @ (p) = p. Thus by (CY), ¢ (M) must be
disconnected. This is a contradiction. Hence N = &. If xo € N, then, similar to the
proof of Theorem 3.1, lim; X0 -t = X. ]

The next theorem can be considered as an extension of the continuous dependence
of solution of ordinary differential equations on parameters.

THEOREM 3.4. Let {fin} be a sequence of vector fields in R™, and let D C R" be a
bounded domain. Suppose for each m, f, € C1(D), and there is a constant K such that
| fm(x)| <K for allm and x € D. Suppose y., (t) is a solution of

dx

ar = fm(x), (3.2)
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which is defined on the interval (a,b) and lies in D for all m. Then {y,,(t)} has a
uniformly convergent subsequence on compact subsets of (a,b), which converges to
a continuous of bounded variations function, say y(t). Moreover, suppose there is a
to € (a,b) and a C! vector field, say f, on a neighborhood of y(ty) such that f,
converges to f uniformly, as m — o, in this neighborhood. Then y(t) is a solution of
the initial-value problem

dx

ar = fx),  x(to) = y(to), (3.3)

on some neighborhood of t.

PROOF. First of all notice that by assumptions {f} and {y; (t)} are uniformly
bounded. It then follows that {y;, (t)} is uniformly of bounded variations on (a,b).
On the other hand, for a < t; < t» < b, we have

ym(e2) =ym(e)] = | [} fnlym 0t

t
< JZ | fn (ym (1)) | dt (3.4)

ty

t2
SJ Kdt=K|t,—t1].
t

Thus {y (t)} is equicontinuous on (a,b). Let a < & < 8 < b. By Arzela-Ascoli theorem
there is a subsequence of this sequence which is convergent uniformly on [, B8], to
a continuous function, say y(t). Hence we may assume y(t) is defined on (a,b) and
{ym (1)} converges uniformly to y(t) on each compact subset of (a,b). Moreover, by
Helly’s first theorem [17], y(t) is of bounded variations too.

Now, suppose for large values of m, in a neighborhood of y(ty), fin converges to
f uniformly. Since f has continuous first derivatives on the closure of this neighbor-
hood, we may assume that f is uniformly Lipschitz with Lipschitz constant A > 0, in
this neighborhood. Since {y,, (t)} converges uniformly on compact subsets of (a,b),
there is € > 0 such that y,, (t) lies in the above neighborhood for t € [ty —¢&,to+ €] and
all m. Now for t € [ty,to+ &) and n,m, we have

Y @) =yn @O | = [ fin (ym () = fu(yn (D)) |
< [Fym®) = Fyn®) |+ | f (ym () = f (ym (D)) |
+ [ fa(yn(@®©) = f(yn () | (3.5)
<A lym(E) —yn(t) | +&m +&n

t
< e+ entAlym (t0) v (t0) | +A [ |yia(®)-yi(0)|dt,
0

“w

where means d/dt. Therefore by Gronwall’s inequality [6], we must have

[ Y () =yn (D) | < [em+En+A|ym(to) —yn(to)]]eM 10

3.6
<[em+en+Alym(to) —yn(to) | ]e. (3.6)
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Similarly, for t € (to — ¢, to] we must have
[y () =yn(t) | < [em +&n+Alym(to) — yn(to)|]ee. (3.7)

Thus {y,, (t)} is uniformly Cauchy on [to—¢€,to + €]. Therefore, y’ (t) exists and y’ (t) =
limy,— o Yy, (£) on (tg — &, to + €). Hence on (ty—¢&,to +¢€)

Y () =f(y®) ] < |y &)=y )]
+ ] i (ym() = f(ym (1)) ] (3.8)
+f(ym(®D) = f(y@®)].

Thus y(t) is the solution of (3.3) in a neighborhood of t. O

Now, in this section, we have the following theorem which can be considered as a
continuous dependence of solutions to the parameter for singular situations.
For x € R"™ and y € R", we consider the following system of equations in R"*™

x=f(xy), &v=gkx,y), (3.9)

where “- = d/dt,” as before, f:R"™™ — R™ and g : R"*™ — R™ are continuous func-
tions and € € R is a parameter.

THEOREM 3.5. Let Dy C R"™ and D, C R™ be bounded domains and f and g on
D1 x Dy have continuous second derivatives and (xo, o) € D1 X D> be hyperbolic rest
point of system (3.9). Moreover, assume that the following conditions hold.

(Cy) g(x,y) =0 ifandonly if y = G(x), where G : D, — R™ has continuous second
derivatives.

(C2) There exist nonnegative constant integers k; and k,,, with ks + k,, = m, such
that for all x € D, the m xm matrix 0g(x,G(x)) /0y has ks eigenvalues with negative
real part and k, eigenvalues with positive real part, uniformly bounded away from
zero for all x € D;.

(C3) For € =0, there is an orbit of system (3.9) say yo(t) which is running to the rest
point (xo, o) and intersects a hypersurface, say Q, at the point y,(ty), transversely.

Then for given 6 > 0, there is an &y > 0, such that for each € € (—¢&g,&y) there exists
an orbit of system (3.9) corresponding to &, say y.(t), which is running to (xo,yo) and
intersects Q transversely at a point in §-neighborhood of y(to).

PROOF. Let p = (x0,)0) and I'*(p) be the stable manifold of system (3.9) corre-
sponding to € = 0, at the rest point p.

Thus y(t) is lying on this manifold. For each g € T*(p), let F*(gq) be the stable
manifold of system

x=0, y=9kx,y), (3.10)
at the rest point g of this system. Now define

wip)= |J F(a). (3.11)
qers(p)
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By [8, Theorem 12.2(ii)], W*(p) perturbes smoothly to the stable manifold W7 (p) of
the hyperbolic rest point p of system (3.9) for small . This means that for y,(ty) €
W#(p) and given 6 > 0 there is an &y > 0 such that for every € € (—¢&g, o) there is a
ps € W (p) N Bs(yo(to)) such that if y,(t) is the solution of (3.9) corresponding to
this ¢ initiating at p,, then y.(t) is running to p, moreover,

[ye(t) —yo )|+ |ye(t) —yo(t)| <6, (3.12)

for all t > ty. Thus for 6 small, y.(t) intersects Q, transversely. O

4. Existence of structure when o =0 for T < T and ¢ = o for T > T. In this
section, we discuss the existence of structure for fast, slow, switch-on, and switch-off
shocks when the coefficient of electrical conductivity is zero ahead of the shock and
very large behind it. That is in this case we have

o(T) =

0 forT=<T, o forT<T,
(4.1)

B or v(T) = _
o forT>T, 0 forT>T.
Thus for T < T, x> = 0 which means that x» is constant. Let X» be the fourth compo-

nent of u at the downstream state. Then at this state from G;(u) =0, 1 <i < 3, we
obtain x; = 6X» and

FI(V,T):=-%3+V~-J+p(V,T) =0,

N | =

4.2)

Fo(V,T):=—=%3(V-6%) —exo+ JV—E+e(V,T) =0.

N | —

Now if we let J; = J — (1/2)%5 and E; = E + eX, — (1/2)5°%3, then this system of
algebraic equations is the same as [13, equations (3.2.2)]. Thus from [13, Theorem
3.2.1], we have the following lemma.

LEMMA 4.1. System (4.2) has a unique solution, say (V,T), in the region0 < T < T, if
WViFL(V,T) <0 n{V:E(V,T) >0} + @. 4.3)

If the point (V, T) exists as above, then downstream state of the shock is
= (V,6%,T,X2), (4.4)

for some 0 < T < T. Notice that also for 0 < T < T, system (2.1) reduces to the follow-
ing system:

1. .
V= Ex§+V—J+p(v,T) = G (1),
HX1 = X1 —0X2 =1 G2 (1), (4.5)
kT = —%(x% —28%2x1 +v5c§) —&Xo— %vz +JV—E+e(V,T) = Gz (1),

where 71 = (V,x1,T).
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For T > T, v(T) = 0. Thus G4(u) = 0 or x» = V-1(8x; — €). If we substitute this
value of x; into the other equations of system (2.1), then this system reduces to the
system

V= %V*Z(éxl —)? 4V —J+p(V,T) = Gio(@),

. 52 o€ N
pi = (1= )or + 57 =t Gao (@), (4.6)
. 1 62 2 -1 1 2y/-1 1 2 ¥
kT:—§<1—7)x1—56V X1+§s \% —§V +JV—E+e(V,T) =:G3p(1n),

where 1t = (V,x1,T).

Let T; be the third component of u;, 0 < i < 3, which is given by (2.2). If To < T <
T1, then consider systems (4.5) and (4.6) in the region V > §2 and the downstream
and upstream states of the shock are iig = (V,8%,,T,%>) and u; = (Vi,x11,T1,X21),
respectively. This case corresponds to the fast ionizing shock. For T> < T < T3, these
systems must be considered in 0 < V < §2. In this case the downstream and upstream
states of the shocks are i, = (V,8%»,T,%,), and u3 = (V3,x13, T3, X23), respectively.
In this case the shock between i, and 13 corresponds to slow shock. In the following
we prove the existence of structures.

4.1. Fastshock. Inorder to prove the existence of structure for fast shock we define
Df={0eR3:Gio(@1) <0, Goo(@i) <0, G3o(?t) >0, V>38%, T<T<Ti}. (4.7)

Now, if we differentiate G;o(i1), 1 < i < 3, along the orbits of system (4.6) we obtain

a6 () = SV 2(5x1 — &) Gao () + K~ pr (1) G0 (1),
dt G1o(i1)=0
M = 6V72(6X1*E)[Jf1610(ﬁ)! (48)
dt G0 (1)=0
AGso (1 n 7 1 !
30(11) = —u [Gao ()] = U7 [Gro(@)]? + uy L TSy () Gro (),
dt G30(11)=0

where in the last equality we used the identity ey +p = TSy. In Dy we have §2 < V.
It follows, from G (i) < 0, that 6x1 —& <0 in Dy. Then from (4.8) we see that every
orbit of system (4.6) is oriented in such a way that as t increases, it must go out of D¢
when crossing the boundary of Dy on G (i) = 0, at a point different from the rest
point i, = (Vy,x11,T1). Also system (4.6) is gradient-like with respect to h(it) = T,
and the hypersurface T = constant, intersects Dy on a set homomorphic to the unit
disk. Finally, from

aT

—_— = G3o (T - 4.
At T-T 30(“) | T=T ( 9)

we see that every orbit of system (4.6) starting at a point on {it € D¢ : T = T}, it must

get into Dy as t increases. Therefore, system (4.6) together with Dy, the rest point

11 = (Vi,x11,T1), and the gradient-like function h(it) = T satisfy all the conditions of
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Theorem 3.1. Hence, by that theorem, there must be a point tiy on {tt € 0Ds: T = T}
such that the orbit of system (4.6), initiating at this point, is lying in D and is running
toi; = (V1,x11,T1). We denote this orbitby 71 (t) = (V(t),%:1(t),T(t)),t € [0,). Then
1(0) =ty and lim;_ 0 (t) = ;.

Now consider system (4.5) with X, as Xzf = [V(0)]71[6%,(0) — €]. Since Uy €
Dy, we get Gio(iiy) < 0 and Gso(iiy) > 0, then the equalities Gio(iis) = F1(V(0),T)
and Gso(ity) = F2(V(0),T) — (1/2)(%1(0) — 6%2(0))? follow F;(V(0),T) < 0 and
F>(V(0),T) > 0. Thus from Lemma 4.1, this system admits the unique rest point say
Qop = (Vp, %17, Tf) in T < T, where X, = 8X»7. This rest point is located on the
boundary of the set

D) ={t € R®: G1o () <0, G (1) <0, G30o(11) >0, V > 82, T < T}. (4.10)

Notice that 7ty = 11 (0) € aD} N{f:T =T}.If we differentiate T and G;« (1), 0 <i < 3,

along the orbits of system (4.5) yield
dGi. (1)
at  161.(m=0
AGre (1)
at Gy @=0
AGse (11)
at  163.(m)=0

ar N
E T-T = G300 (1) | T=T > 0,

=k 'prG3. (1) > 0,

=0,
4.11)
= 1 Gaw ()] =y [Greo () ]+ TSy (11) G () <O,

where in the third equality we used the identity ey + p = TSy from thermodynamics.
Thus the surface Ga (1) = 0 is invariant and the flow of system (4.5) goes out of D}
on 8D}~\{12 1 G2 (1) = 0}. Since this system is gradient-like with respect to h(ii) =T,
thus every orbit of this system initiating at a point on 6D} N{it: T = T} must be lying
in D} for ¢ < 0 and is running to the rest point #,s as ¢ tends to minus infinity. Let
11(t) be the orbit initiating at the point #, which is defined for t < 0.

Now define

V), T(t),%1,%2y) fort <0,

wp(ty=4 T (4.12)
(V(t),T(t),%1(t),%2(t)) fort=0,

where V(t), T(t), £1(t) are the components of 7(t), X2(t) = [V ()] [6%1(t) — €],
X2f = %2(0),and V(t), T(t), X1 (t) are the components of 7(t). Finally, notice that the
first three components of uy has continuous first derivative at t = 0. Therefore, we
have proved the following theorem.

THEOREM 4.2. Suppose that system (2.1) admits the rest points uy and u; and Ty <
T < Ti, where Ty and T, are the temperatures at uoy and u,, respectively. Moreover,
assume that uy(T), u(T), and k(T) are smooth, bounded and bounded away from
zero, and v(T) is given by (4.1). Then there is a rest point of (2.1), say tig in T < T
and a complete orbit of this system corresponding to fast shock which is running from
Uof = (Vf,icl, Tf,iczf) to u, and the components of this orbit are monotone.
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4.2. Slow shock. Suppose that the rest points u; = (Vi,x14, T3, X2i), 1 = 2,3, exist
and in (4.1) we have T> < T < Ts. In order to show the existence of heteroclinic orbit
corresponds to slow shock, we define

Ds={0teR3:G1p(1) <0, Gao(il) <0, G30(@t) >0,0<V <% T<T<T3}. (4.13)

First of all notice that in D, we have dx; —& > 0.

From the second equality in (4.8) it follows that the flow gets into D; on Gy (1) = 0.
Also from third equality of (4.8) we see that the flow goes out of D on G3o(it) = 0.
Finally the first equality of (4.8) implies that the flow goes out of Ds on {1t € 0D; :
Gio(l) = 0, G1o(i1) > 0} and gets into Ds on {il € dDs : G1o(i1) = 0, G1o(@2) < 0},
where “- = d/dt” as before.

Here we wish to show that the flow goes out of D; on

E = {@t € 0D;\{13} : G1o(@) = 0, Gyo(@1) = 0}. (4.14)

In order to do this, it is sufficient to show that the second derivative of G (1) is
positive on Gio () = Gio(it) = 0.

d’Gro(it) Goo(11) { 52 . ) 52
el P = O Gao(i) — 2 (531 — ¢ (1——)
dez - [Go - p2 vz 2 oxi-e(l-y
L 2 20 (0 415
—VZPTT[PTT (8x1—€) Goo(11) (4.15)

+ %VTGZO(T:L) + %%(5951 —5)67(11)}-

This is positive for each of the following cases.

CASE 1. When |Gyo(11)] is small on G1o(it) = 0.

CASE 2. When prr >0 and u/k is small.

CASE 3. When prr = 0 and prGog + (8/V?)(6x1 —&)er (i) =0

CASE 4. The gas is ideal with y < 2.

In order to see Case 4, notice that for the ideal gas we have p = nRT/V and e =
NRT/(y—1). Thus prr = 0 and er — Vpr = nR(2-y)/(y—1) which is positive for
y < 2. On the other hand, in D; we have 6x; — ¢ > 0. Thus

. ) . 52 1) 1)
prGao(t) + W((le —&)er(it) = 701[(1 - V)XI + VE] + W((le —&)er
1)

= W(—VVT+eT)(5x1—e)+x1pT > 0.

(4.16)

Therefore Case 3 implies Case 4.

Now, system (4.6) together with Dy, the rest point 7i3 = (V3,x13, T3), and the function
h(i1) = T satisfy all conditions of Theorem 3.3. Thus there is an orbit of this system
initiating at a point iy € {1t € 0D, : T = T}, lying in D and is running to 1i3. We denote
this orbit by @t (t) = (V¥ (t),x7 (1), T*(t)),0 <t < oo,
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Now, consider system (4.5). If we substitute for X, in this system by X,; =
[V*(0)]17'[8x; (0) — €], then similar to the fast case this system admits a unique rest
point say tlos = (Vs, %15, Ts) in T < T, where &15 = 6%»s and (V,T) is given in (4.4).
This rest point and s = 7+ (0) are located on the boundary of

D;={leR?:G1o(@) <0, Gos (@) <0, G3(1) >0, 0<V <52, T<T}. (4.17)

Similar to the case of fast shock, the orbit of system (4.5) corresponds to the initial
condition % (0) = @t = 71+ (0) is defined for t < 0, lies in D; and is running from ;.
Let u (t) = (V- (t),x7 (t),T (t)) be this orbit. Now define

(V*(t), x5 (), T*(t),x;5(t)) fort=0,
us(t) = (4.18)
(V=(),xy (1), T~ (t),X25)  fort =<0,

where xJ (t) = [8x7 (t)—&][V*(t)]7! and %25 = x3 (0), as before. Thus we have proved
the following theorem.

THEOREM 4.3. Suppose that system (2.1) admits the rest points u, and us and
T» < T < T3, where T; is the temperature at the rest point u;, i = 2,3, and the viscosity
parameters py (T), u(T), k(T), and v(T) are as in Theorem 4.2. Moreover, one of the
above four cases holds. Then the ionizing slow shock admits structure. Along this struc-
ture, density, temperature and the vertical component of velocity are increasing, but
the vertical component of the magnetic field is nondecreasing.

4.3. Switch-on and switch-off shocks. Aswe mentioned in Section 2, switch-on and
switch-off shocks occur if in system (2.1) we have € = 0 (i.e., in the absence of electric
field). Here we obtain the structure for switch-on and switch-off ionizing shocks as
limits of structure for fast and slow shocks, respectively. We do this for switch-on
shock, the same arguments work for switch-off too.

Suppose 1;, i = 0,1, the rest point corresponds to the switch-on shock exist and
the ionizing temperature T is between the temperature at it and ;. Then by [13,
Theorem 3.3.1], 1o (&) and u; (&), the rest points corresponding to fast shock exist for
& > 0 and small, moreover, lim,_ou;() = @;. Thus T is between the temperature at
Ug(e) and uq (&).

Now choose &, — 0. By Theorem 4.2, for each &,, there is a heteroclinic orbit, say
ym (t), which is running from a rest point of system (2.1), say uosm to the rest point
U1 (&m). Since {ugrm} is bounded, it contains a convergent subsequence. We may
assume that limy, .« Uofm = Uon.

The sequence {y, (t)} is uniformly bounded and componentwise monotone. There-
fore, by Helly’s theorem [17], it has a subsequence which is uniformly convergent on
the compact subsets of R. We may assume that y,,(t) converges to a continuous
function, say y(t). Then similar to the fast shock, we can show that y,(t) is compo-
nentwise strictly monotone and intersects the surface T = T at a single point, say to.
Moreover, similar to the proof of Theorem 3.4 we can show that y((t) are componen-
twise differentiable except its last component at t, and satisfies system (2.1). Hence
we have proved the following theorem.
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THEOREM 4.4. If the rest point i, i = 0,1, exists, then under the same conditions
of Theorem 4.2, the ionizing switch-on shock admits structure, which has all of the
properties of the ionizing fast shock. Similarly, if i, and 13 exist, then under the same
conditions of Theorem 4.3 the structure for switch-off shock exists and has the same
properties as those of slow shock.

4.4. Transverse magnetic field shock. In the case of transverse magnetic field in
system (2.1), 6 must be considered zero. In this case system (2.1) admits two rest
points which are the limiting case of the rest points corresponding to fast shock as ¢
tends to zero. Thus similar to switch-on shock the structure for the related ionizing
shock can be found from the structure for ionizing fast shock as 6 tends to zero. Also
this structure can be found directly by using the same technique which is used for
the ionizing fast shock.

5. Existence of structure for o = 0 ahead of the shock and very large behind
it. In this section, we show that the ionizing fast, slow, switch-on, switch-off admit
structure when the electrical conductivity coefficient is zero ahead of the shock and
is very large behind it. Thus in this case we have

00 forT<T,
v(T) = _ (5.1)
vo(T) forT>T,

where v, (T) as well as p; (T), u(T), and k(T) are smooth (i.e., C') positive value with
vo(T) < 1. As we said in the introduction, this case has been discussed in [2, 18] for
the case of transverse magnetic field (i.e., 6 = 0) and k(T) or u;(T) is assumed to be
zero and the gas is taken to be ideal gas. In this section similar to the previous section,
we consider the problem for all types of the ionizing shocks as follows.

5.1. Fast shocks. Suppose the rest points 1 and u; exist and T is between the
temperature at 1y and u;. Here we define

Df={ueR*:G1(u) <0, G2(u) <0, Gs(u) >0,

)y (5.2)
Ga(u) <0,V >6% T<T<T},

where u = (v,x;,T,x>») and T; is the value of temperature at u;. First of all, V > §2,
G2(u) <0, and G4(u) <0 imply that x» <0 and x; <0 in Dy. Now, if we differentiate
Gi(u), 0 <i <4, and T along the orbits of system (2.1) we obtain

G1(u) =v;'xGa(u) +kprGs(u),
G1(w)=0

GZ (u) |G2(u)=0 = —5VEIG4(M),

G3(u) - 0=—u*l[sz)]z—vgl[G4<u>]2—k*1[Gg<u>]2+u;1TSvcl<u>, (5.3)
3(u)=

Ga(u) = —Su~ G (u) + Ui %2 Gy (w),
G4(u)=0

TlT:T =G3(u),
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where in the third equality we used the identity ey = p + TSy which is a result of
second law of thermodynamics. Thus the flow goes out of Dy on {u € 0Dy : T > T}
and gets into Dy on {u € 0Dy : T = T1}. Moreover, system (2.1) is gradient-like with
respect to h(u) = T in Dy. Similar to the fast shock in the previous section, it follows
from Theorem 3.1, there exists a point, say ug, on {u € 0Dy : T = T} such that the
orbit of system (2.1), initiating at this point, is lying in Dy and running to u; as t tends
to oo and its components are monotone. We denote this orbit by u}(t), t €[0,). Let
X, be the value of x, at the point uy = u}(O). Now, consider system (4.5) for this
value of X;. Similar to the fast and slow shocks in Section 4, we can show system (4.5)
admits a unique rest pointin T < T, say uor which is on the surface x, = X, and the
orbit of system (4.5) initiating at the point u s is running from ur; lying on the surface
X2 = X7, and the other its components are strictly monotone. We call this orbit Uy (t).
Now define

u}(t) fort <0,
ur(t) = i (5.4)
uf(t) fort > 0.

This orbit is the structure for ionizing fast shock, in this case. Along this orbit, V, x1,
and x, are decreasing and T is increasing. Hence we have the following theorem.

THEOREM 5.1. Letin Theorem 4.2, v(T) be given by (5.1) and the other assumptions
remain the same. Then all of its conclusions are valid.

5.2. Slow shock. The technique we use here to show the existence of structure for
slow shock, for v(T) is given by (5.1), is different from the previous one. The reason
for using a different approach is that Theorems 3.1, 3.2, and 3.3 cannot be applied in
this case. The technique we use here is to obtain the structure for ionizing slow shock,
corresponding to v(T) which is given by (5.1), as a perturbation of the structure of
ionizing slow shock which is found in Section 4.

Let x = (V,x1,T)T, y = x2, v =¢, f(x,¥) = (G1(w),G2(u),G3(u))" and g(x,y) =
G4(u), where u = (V,x1,T,x»)T, v and G;, 1 < i < 4, are the same as in system (2.1).
Then system (2.1) is of the form of system (3.9). We consider this system on the
bounded domain

Dy xDs = {(V,XI,T) Vs v lwiaw), Borcon, X8 ok < 2x12}

2 2 2 2
(5.5)
X {XQ : % < X2 < 2X22}.
Thus f and g have continuous second derivative on D X D> and us is the only rest
point of this system in D; x D. It is known that this rest point is hyperbolic [10, 11].
For ¢ # 0 its linearized matrix has two positive eigenvalues and two negative. For € = 0
it has one positive and two negative eigenvalues. For details about the eigenvalues the
reader is referred to [13, Section 2.5].

In order to see conditions (C;) and (C») of Theorem 3.5 hold, notice that the equa-
tion g(x,y) =0, namely, —6x; + Vx> +¢& =0, implies x, = V-1 (8x; — €). Hence condi-
tion (C;) holds too. Also the one by one matrix 0g(x,G(x))/0y =V has one positive
eigenvalue uniformly bounded away from zero. This means that condition (C;) holds.
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Now, consider the orbit u,(t) which is given by (4.9). For t > 0 this orbit is a solution
of (2.1) corresponding to v = 0. This orbit intersects the surface T = T transversely,
runs to u3 and lies in Dy = {u € R*: G1(u) <0, Go»(u) <0, G3(u) >0, Ga(u) = 0}.
Thus condition (C4) holds too. Therefore by Theorem 3.5 there is vy > 0 such that
for each 0 < v < vy there exists an orbit of system (2.1) corresponding to v, in-
tersecting the surface T = T, transversely, running to usz, and lying in the region
weR*:Gi(u) <0, Ga(u) <0, G3(u) >0, T < T}. We denote this orbit by ui,(t),
t € [0,). Along this orbit -V, —x, and T are increasing.

Let, in system (4.5), X» be the value of x, at u,;(0). Then the orbit u,(t) which is
given by (4.9) is a solution of this system for t < 0, initiating at u,;(0) and is running
from a rest point of this system, say u;, which exists similar to previous cases since
uys(0) € {u € R*: G (u) <0, Go(u) <0, G3(u) >0, T < T}. Along this orbit -V,
—x1, and T are increasing. We call this orbit u;,,(t). Now define

(5.6)

ut (t) fort=0,
Uys(t) = _
u,,(t) fort=<o0,

which is the structure for ionizing slow shock corresponding to v(T) which is given
by (5.1). Therefore we have the following theorem.

THEOREM 5.2. Letin Theorem 4.3, v(T) be given by (5.1) and the other assumptions
be the same. Then all of its conclusions remain valid, except the x, component of the
structure orbit may not be monotone.

5.3. Switch-on and Switch-off shocks. In the previous section, by taking advantage
from the existence of structure for fast and slow ionizing shocks and componentwise
monotonicity of the related orbits, and using Helly’s theorem, we were able to prove
the existence of structure for switch-on and switch-off ionizing shocks as a limiting
of the structure of the above shocks as ¢ tends to zero. Here in this section we have
all of the above situations with one exception for the orbit of the slow shock. This
exception is that the x> component of this orbit is of bounded variations instead
of monotone. In the proof we used monotonicity for applying Helly’s theorem. But
Helly’s theorem works for the class of bounded variations, too [17]. Thus we have the
following theorem.

THEOREM 5.3. Let, in Theorem 4.4, v(T) be given by (5.1) and the other assumptions
remains the same. Then the structure for ionizing switch-on and switch-off exists and
has all of the properties the same except that the x,-component of the structure for
switch-off shock is of bounded variations instead of being monotone.

5.4. Transverse magnetic field shock. In this case, again system (2.1) admits two
rest points and by the same argument which is used in the previous section we can
show this shock admits structure. Here we should mention that this is the only case
which is considered in literature, where at least one of the viscosity parameters, u;, u
or k is assumed to be zero.

6. Existence of structure for o very small ahead of the shock and very large
behind it. In order to prove the existence of structure for slow as well as fast shock,
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when the electrical conductivity is very small ahead of the shock and very large behind
it, we consider a sequence of a system of ordinary differential equations related to
system (2.1) as follows:

——G1(u) := Hi(u),

n (T)
X1 = —Gz(u) =H(u),
T
u(T) 6.1)
T = k(T)Gj(u) = H3z(u),

1
X = 1) ——G4(u) := Hy(u),

where G;(u), 0 < i < 3 are the same as before. Here we assume that the viscosity
parameters pi (T), u(T), k(T), and v,,(T) are smooth functions of T, bounded and
bounded away from zero. Moreover, we assume that

- 1
T for T<T—-——
vi(T) orT < il

<T<T+

_ 1
Vi (T) = {vom(T) for T -— o (6.2)

+1’

- 1
vo (T) forT>T+m+1,

where T is the ionizing temperature and vo,, (T) is a smooth monotone decreasing
function such that v, (T) is smooth too. About system (6.2) we know the following
facts from [3, 4, 10, 11, 13, 20, 22].

THEOREM 6.1. System (6.1) (as well as system (2.1)) is gradient-like with respect to
the real function

Pu)=T'(-G3(u)+TS), (6.3)
where G3(u) and S are the same as before [10].

THEOREM 6.2. For fixed m, there is a unique orbit of system (6.1), say ym (t), which
is running from ug to u,. For all m these orbits are lying in the bounded domain

Df={ueR*:Gi(u) <0, G2(u) <0, G3(u) >0, Ga(u) <0}. (6.4)

Along these orbits x1, x», and T are decreasing, but T (t) is increasing (see [10] and
[13, Theorem 2.2.2]).

THEOREM 6.3. For fixed m, there is an orbit of system (6.1), say ym (t), which is
running from u; to us. For all m these orbits are lying in a bounded domain

Bcl{ueR*:pux)—a<p) <p(us)+al, (6.5)
for some a > 0 and small. (See [3, Theorem 4.1].)

Here we should mention that in [3, Theorem 4.1] proved the existence of heteroclinic
orbit between u, and 13 for the six-dimensional system (2.3) in [3]. The authors in
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[4, page 435] showed that the above complete orbits must be lying in the subspace
y1 = y2 =0 (7 and y; are the fifth and sixth variables in their work, the first four
variables are the same as ours). Now, if the substitute y; = y» = 0 in their system
(2.4), we obtain our system (6.1).

Another point about Conely and Smoller’s work is that in their work they had never
assumed that the viscosity parameters are constants, nor they mentioned that the vis-
cosities are functions of T. However, their proofs are organized in such a way that they
work even if the viscosities are functions of u, as long as they are smooth, bounded and
bounded away from zero. Thus their Theorem 4.1 in [3] implies Theorem 6.3 above.

Now we can prove the existence of structure for ionizing shocks as follows.

6.1. Fast shock. Consider system (6.1), the rest points uy and u; and assume that
To < T < Ty where T;, i = 0,1, is the temperature at uy and 1, respectively.

According to Theorem 6.2 for m = 1,2,..., there is a unique orbit, y,, (t), which is
running from u, to u; and is lying in the bounded domain D . Thus by Theorem 6.1,
{ym(t)} contains a subsequence which is convergent to a continuous function y (t).
Let ym (t) = (Vin (t),X1m (£), Tin (t), X2m (£)) and y (£) = (V(t),x1(t),T(t),x2(t)). Since
Hi (u) is continuous and bounded on D, from the first equation of system (6.1) and
Lebesgue dominated convergence theorem we have

V(t) = lim Vi (1) = lim [Vm(0)+J;H1(ym(s))ds] :V(O)+J;H1[y(s)]ds. (6.6)
This means that for t € R, we have
V(t) = Hi(y(1)). (6.7)
Similarly,
Xi1(t) =Ha(y(0),  T(@)=H;(y()). (6.8)

By the proof of [13, Theorem 2.2.2], the flow goes out of Dy on H3(u) =0 = G3(u).
Thus H3(y(£)) > 0 for all ¢ € R. Thus y(t) intersects the surface {u € R3:T = T} at
a single point. Therefore by Theorem 3.4, y(t) is differentiable for all t € R except at
a single point, and satisfies system (2.1). On the other hand, y(t) is componentwise
monotone and bounded, thus lim;_.y(t) exists and is a rest point of system (2.1) in
Dy ={u € R*: T > T}.But the only possibility is u;. Thatis lim¢_. y (t) = u;. Similarly
lim;_._y(t) = up. Finally, in [10], Germain showed that the stable manifold of system
(2.1) at u; is one-dimensional. Therefore the above heteroclinic orbit is unique. Hence
we have proved the following theorem.

THEOREM 6.4. Let vi(T) and v:2(T) be smooth, bounded and bounded away from
zero and assume that in Theorem 5.1 v(T) is given by

V(T) = 1\/1 (T) forT<T, 6.9)

vo(T) forT=T.
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Then the heteroclinic orbit corresponding to the structure for fast ionizing shock exist.
Along this orbit, V(t), x1(t), and T(t) are continuous and X»(t) has a single jump
discontinuity. Moreover, along this orbit T (t) is increasing, and x, (t), x»(t), and V (t)
are decreasing.

REMARK 6.5. Here we should mention that the above theorem can be proved by the
technique which is used in Sections 3 and 4 for fast shock. But the above technique
gives more information about the smoothness of the components of the structure of
the shock.

6.2. Slow shock. Suppose that u;, i = 2,3, exist and T> < T < T3, where T; is the
value of the temperature at the point u;, as before. According to Theorem 6.3, for each
m, there is an orbit of system (6.1) which is lying in a bounded set, say D; € B ¢ R*
and is running from u, to us.

We denote this orbit by y;, (t). Similar to the fast shock, this sequence contains
a subsequence which converges uniformly on compact subsets of R to a continu-
ous function say y(t) = (V(t),x1(t),T(t),x2(t)). For u = (V,x1,T,x2) € Ds with
T = T and large value of m, there is a neighborhood of u such that in this neighbor-
hood systems (2.1) and (6.1) coincide to each other. Thus by Theorem 3.4, y(t) is
differentiable on R\ {tq: T (to) = T}. Moreover, for all t, y(t) satisfies the first three
equations of system (2.1), and satisfies the last equation of (2.1) for t with T(¢) = T,
we have

. 1
X (t) = mGAl(Y(t))- (6.10)

On the other hand, {x2, (t)} is uniformly bounded and its total variations is uniformly
bounded, thus by Helly’s first theorem [17], x»(t) must be of bounded variations.
Hence on the set {tq: T(to) = T}, T(t) is differentiable almost everywhere.

Finally for T € {T: To < T < T3}\{T}, T,n(t) intersects the plane T = T at a point,
say t, for the first time as t increases. Systems (6.1) and (2.1) are both autonomous,
thus we may assume that t,, = to for all m and some t, € R. Therefore, y(ty) =
limy,,— 0 Y (to) is located on the plane T = T. If T < T, then y(t) is differentiable
and is lying in the region D; = D;n{u: T < T}, for all t < t,. Since by Theorem 6.1,
system (2.1) is gradient-like, lim;_._. y(t) exists and is a rest point of this system
in this region. But u; is the only possibility. Therefore, lim;_._.y(t) = u. Similarly,
lim;_ .y (t) = us. Thus we have proved the following theorem.

THEOREM 6.6. Under the assumptions of Theorem 5.2, for v(T) given by (6.1), the
heteroclinic orbit corresponding to slow ionizing shock exists, which is running from
Uy to us. Along this orbit V(t), x1(t), and T(t) are continuous. Fort ¢ {t: T(t) =T},
X (t) exists too. On each point of {t : T(t) = T}, x»(t) has a jump discontinuity. This
set of discontinuities has measure zero.

REMARKS. (1) By using the same technique which is used in Section 5, we can show
that the switch-on ionizing shock admits structure. Similarly, the structure for ioniz-
ing transverse magnetic field exists.
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(2) Although the case

{vl(T) forT<T,
v(T) = (6.11)

00 fOI‘T>T,

is not considered in the literature, but the cases of ionizing fast, switch-on and the
case of transverse magnetic field can be solved with the same technique which is used
in this section and the previous sections.

ACKNOWLEDGEMENTS. The authors would like to thank the Institute for Studies
in Theoretical Physics and Mathematics (ISTPM), Tehran, Iran, for supporting this re-
search. The second author as a regular associate member and the first author as
a young mathematician member of the International Center for Theoretical Physics
(ICTP) would like to thank ICTP, Trieste, Italy, where some part of this work is done.
The authors also would like to thank the referees for careful reading of the paper and
their very useful suggestions.

REFERENCES

[1] H. Cabannes, Theoretical Magnetofluiddynamics, Applied Mathematics and Mechanics,
vol. 13, Academic Press, New York, 1970.
[2] C. K. Chu, Dynamics of ionizing shock waves: shocks in transverse magnetic fields, Phys.
Fluids 7 (1964), 1349-1357.
[3] C. Conley, Isolated Invariant Sets and the Morse Index, American Mathematical Society,
Rhode Island, 1978.
[4] C.C. Conley and J. A. Smoller, On the structure of magnetohydrodynamic shock waves,
Comm. Pure Appl. Math. 27 (1974), 367-375.
, On the structure of magnetohydrodynamic shock waves. II, J. Math. Pures Appl.
(9) 54 (1975), no. 4, 429-443.
[6] J. Cronin, Differential Equations. Introduction and Qualitative Theory, Pure and Applied
Mathematics, vol. 54, Marcel Dekker, New York, 1980.
[7] Y. Farjami and M. Hesaaraki, Structure of shock waves in planar motion of plasma, Non-
linearity 11 (1998), no. 4, 797-821.
[8] N.Fenichel, Geometric singular perturbation theory for ordinary differential equations, J.
Differential Equations 31 (1979), no. 1, 53-98.
[9] R.A.Gardner, On the detonation of a combustible gas, Trans. Amer. Math. Soc. 277 (1983),
no. 2, 431-468.
[10]  P. Germain, Shock waves and shock-wave structure in magneto-fluid dynamics, Rev. Mod-
ern Phys. 32 (1960), 951-958.
[11] | Shock waves, jump relations, and structure, Adv. in Appl. Mech. 12 (1972), 131-
193.
[12]  R. A. Gross, Strong ionizing shock waves, Rev. Modern Phys. 32 (1965), 724-743.
[13] M. Hesaaraki, The structure of shock waves in magnetohydrodynamics, Mem. Amer. Math.
Soc. 49 (1984), no. 302, v+96.
, The structure of shock waves in magnetohydrodynamics for purely transverse
magnetic fields, SIAM J. Appl. Math. 51 (1991), no. 2, 412-428.
[15] ___, The structure of MFD shock waves in a model of plasma, ]J. Math. Pures Appl. (9)
72 (1993), no. 4, 377-404.
, The structure of MFD shock waves for rectilinear motion in some models of plasma,
Trans. Amer. Math. Soc. 347 (1995), no. 9, 3423-3452.
[17] R.Kannan and C. K. Krueger, Advanced Analysis on the Real Line, Springer-Verlag, New
York, 1996.

(5]

(14]

[16]




(18]

(19]
[20]

[21]
[22]
(23]
[24]
[25]

[26]

[27]
(28]

[29]

ON THE STRUCTURE OF IONIZING SHOCK WAVES ... 415

A. G. Kulikovskil and G. A. Lyubimov, On gas-ionizing magnetohydrodynamic shock
waves, Rev. Modern Phys. 32 (1960), 977-979.

___, Magnetohydrodynamics, Addison-Wesley, Massachusetts, 1965.

M. A. Liberman and A. L. Velikovich, Physics of Shock Waves in Gases and Plasmas,
Springer Series in Electrophysics, vol. 19, Springer-Verlag, Berlin, 1986.

K. Mischaikow and H. Hattori, On the existence of intermediate magnetohydrodynamic
shock waves, J. Dynam. Differential Equations 2 (1990), no. 2, 163-175.

R. V. Polovin and V. P. Demutskii, Fundamental of Magentohydrodynamics, Plenum, 1990.

B. L. Rovzdestvenskiui and N. N. Janenko, Systems of Quasilinear Equations and Their
Applications to Gas Dynamics, Translations of Mathematical Monographs, vol. 55,
American Mathematical Society, Rhode Island, 1983.

J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd ed., Grundlehren der math-
ematischen Wissenschaften, vol. 258, Springer-Verlag, New York, 1994.

A. L. Velikovich and M. A. Liberman, Shock waves in a transverse magnetic field, Soviet
Phys. Uspekhi 22 (1979), no. 11, 843-859 (Russian).

D. H. Wagner, Premixed laminar flames as travelling waves, Reacting Flows: Combustion

and Chemical Reactors, Part 2 (Ithaca, N.Y., 1985), Lectures in Appl. Math., vol. 24,

American Mathematical Society, Rhode Island, 1986, pp. 229-237.

, The existence and behavior of viscous structure for plane detonation waves, SIAM

J. Math. Anal. 20 (1989), no. 5, 1035-1054.

L. C. Woods, Principles of Magnetoplasma Dynamics, Oxford University Press, New York,
1987.

Y. B. Zel’dovich, Theory of propagation of detonations in gaseous systems, J. Experiment.
Theoret. Phys. 10 (1940), 542-568.

A. AGHAJANI: INSTITUTE FOR STUDIES IN THEORETICAL PHYSICS AND MATHEMATICS, P.O. BOX
19395-5746, TEHRAN, IRAN

Current address: SCHOOL OF SCIENCES, TARBIAT MODARRES UNIVERSITY, P.O. Box 14155-
4838, TEHRAN, IRAN

E-mail address: aghajani@karun.ipm.ac.ir

M. HESAARAKI: INSTITUTE FOR STUDIES IN THEORETICAL PHYSICS AND MATHEMATICS, P.O.
Box 19395-5746, TEHRAN, IRAN

Current address: DEPARTMENT OF MATHEMATICAL SCIENCES, SHARIF UNIVERSITY OF TECH-
NOLOGY, P.O. BOX 11365-9415, TEHRAN, IRAN

E-mail address: hesaraki@karun.ipm.ac.ir


mailto:aghajani@karun.ipm.ac.ir
mailto:hesaraki@karun.ipm.ac.ir

Mathematical Problems in Engineering

Special Issue on

Modeling Experimental Nonlinear Dynamics and

Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the
70s, was focused on intentionally built nonlinear parts in
order to improve the operational characteristics of a device
or system. Keying, saturation, hysteretic phenomena, and
dead zones were added to existing devices increasing their
behavior diversity and precision. In this context, an intrinsic
nonlinearity was treated just as a linear approximation,
around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear
and chaotic phenomena, engineers started using analytical
tools from “Qualitative Theory of Differential Equations,”
allowing more precise analysis and synthesis, in order to
produce new vital products and services. Bifurcation theory,
dynamical systems and chaos started to be part of the
mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Prob-
lems in Engineering aims to provide a picture of the impor-
tance of the bifurcation theory, relating it with nonlinear
and chaotic dynamics for natural and engineered systems.
Ideas of how this dynamics can be captured through precisely
tailored real and numerical experiments and understanding
by the combination of specific tools that associate dynamical
system theory and geometric tools in a very clever, sophis-
ticated, and at the same time simple and unique analytical
environment are the subject of this issue, allowing new
methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

Manuscript Due December 1, 2008

First Round of Reviews | March 1, 2009

Publication Date June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and
Control Engineering Department, Polytechnic School, The
University of Sdo Paulo, 05508-970 Sao Paulo, Brazil;
piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratério Associado de
Matemadtica Aplicada e Computagdo (LAC), Instituto
Nacional de Pesquisas Espaciais (INPE), Sdo Jose dos
Campos, 12227-010 Sao Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research,
King’s College, University of Aberdeen, Aberdeen AB24
3UE, UK; grebogi@abdn.ac.uk

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers4pt
	Guest Editors

