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Let Cy (X) be the ideal of functions with pseudocompact support and let kX be the set of
all points in vX having compact neighborhoods. We show that Cy (X) is pure if and only if
BX —kX is around subset of BX, Cy (X) is a projective C(X)-module if and only if Cy (X) is
pure and kX is paracompact. We also show that if Cy (X) is pure, then for each f € Cy (X)
the ideal (f) is a projective (flat) C(X)-module if and only if kX is basically disconnected
(F'-space).
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1. Introduction. Let X be a completely regular T;-space, X the Stone-Cech com-
pactification of X and vX the Hewitt realcompactification of X. Let C(X) be the
ring of all continuous real-valued functions defined on X. For each f € C(X), let
Z(f)={xeX:f(x)=0},cozf =X-Z(f), the support of f = S(f) = clycoz(f),
and S(fY) = clyx S(f), where fV is the extension of f to vX, S(f¥f) = clpx S(f*), where

1, flx) =1,
ffx)=1f(x), -1<f(x)<1, (1.1)
_11 f(x) S—l,

and f# is its extension to BX.If I is an ideal in C(X), then cozI = U coz f.

Let Cx(X), Cy(X), and I(X) be the ideal of functions with compact support, pseudo-
compact support, and the intersection of all free maximal ideals of C(X), respectively.

The space X is called pu-compact if Cx(X) = I(X), it is called ¥Y-compact if Cx (X) =
Cy(X), and it is called n-compact if Cy(X) = I(X).

Let uX be the smallest pu-compact subspace of X containing X, ¥YX the smallest
Y-compact subspace of BX containing X, and nX the smallest n-compact subspace of
BX containing X.

The following diagram illustrates the relationships between these spaces:

BX
|

vX

/

X (1.2)

uX nX
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For more information about these spaces the reader may consult [7].

For each subset A< BX,let MA = {f € C(X):AcclgxZ(f)} and 04 = {f € C(X):
AcIntgxclgx Z(f)} ={f e C(X):Ac InthZ(fﬁ)}. It is well known that Cx(X) =
OPBX-X and Cy (X) = OPX-vX — MBX-vX_ A subset A of BX is called a round subset of
BX if 04 = M4, see [10].

A space X is called locally pseudocompact if every point of X has a pseudocompact
neighborhood (nbhd), it is called basically disconnected if for each f € C(X), S(f) is
clopen in X and it is called an F’-space if for each f,g € C(X) such that fg = 0, then
S(fHnS(g) = 2.

An ideal I of C(X) is called pure if for each f € I, there exists g € I such that
f = fg.1tis clear that in this case g =1 on S(f).

For any undefined terms here the reader may consult [5].

Purity attracted the attention of a lot of people working in ring and module theories.
A large class of commutative rings can be classified through the pure ideals of the
ring. Purity of some ideals in C(X) was studied by many authors. Kohls [8, Theorem
4.6] called it an ideal with every element having a relative identity. Brookshear (3,
page 325] proved that if X is locally compact, then Cg (X) is pure, Brookshear [3] and
De Marco [4] studied purity and projectivity, Natsheh and Al-Ezeh [11, Theorem 2.4]
characterized pure ideals in C(X) to be the ideals of the form O4, where A is a unique
closed subset of fX, and Abu Osba and Al-Ezeh [1, Theorem 3.2] proved that Cg (X)
is pure if and only if coz Cx (X) = Ufec, S(f).

In this paper, we characterize purity of Cy(X) using the subspace kX, the set of
all points in vX having compact nbhds, then we use this characterization to study
some algebraic properties of this ideal, such as projectivity, when the principal ideal
(f) is projective or flat for each f € Cy(X). We found that if Cy(X) is pure, then it is
projective if and only if kX is paracompact, the principal ideal (f) is projective (flat) if
and only if kX is basically disconnected (F’-space). An example is given to show that
these results are false if Cy (X) is not pure.

The following result is well known and is used very often in this article.

PROPOSITION 1.1. For each space X, C(X) is isomorphic to C(vX), and Cy(X) is
isomorphic to Cx (0X).

PROOF. Let @ : C(X) — C(vX) be defined such that @(f) = f'. Then @ is the
required isomorphism, see [5, Section 8.1] and [6, Theorem 2.1]. O

In this paper, we use the above proposition together with the results we obtained
in [1] to characterize purity of the ideal Cy (X) using the subspace kX.

2. The subspace kX. For each ideal I in C(X), define 0(I) = {x € BX : I < M*}.
Then 0(I) = N¢erclpx Z(f), see [5, Exercise 70.1].

Let kX = BX —0(Cy(X)) = {x € BX : Cy(X) is not contained in M*}. The space kX
is important in classifying some properties of X and some of its extensions and it is
related to the ideal Cx (vX). The following propositions and corollaries illustrate this
fact.
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PROPOSITION 2.1 (see [6, Corollary 3.3 and Theorems 3.1 and 5.3]). The following
Statements are equivalent for any space X:
(i) X is locally pseudocompact;
(i) X < kX;
(iii) nX is locally compact;
(iv) Cy(X) is not contained in any fixed maximal ideal.

PROPOSITION 2.2 (see [6, Theorems 3.2, 5.1, and 5.2]). For each space X,
(i) kX =Intgx vX = Intgy nX = Intgx ¥Y.X;
(ii) nX = XUkX;

(i) YX —X =Upecyon (S =S()).

PROPOSITION 2.3 (see [1, Theorem 2.2]). For each space X, coz Cg(X) = Intgx X.
The following result is an easy consequence of Propositions 2.2 and 2.3.
COROLLARY 2.4. For each space X, kX = coz Cx (0X) = Uygecy x) UX = Z(fY).
COROLLARY 2.5. For each space X, kX = Uscc,x) BX —Z(fP).

PROOF. Let f € Cy(X) € C*(X).Foreachp € BX—-uvX, f e MPNnC*.

So ff(p) = 0 for each p € BX — vX. Thus Z(ff) = (BX —vX) U Z(fY), and BX —
Z(fF) =X (BX—=Z(f") = 0X—=Z(f").

Now, Usecy 0 BX=Z(fF) = Upecy ) VX = Z(f) = Upoecgwx) VX = Z(fY) = kX, by
Corollary 2.4. O

THEOREM 2.6. The space YX is locally compact if and only if X is locally pseudo-
compact and 0(Cy (X)) is a round subset of fX.

PROOF. See [6, Theorem 5.4] and [10, Theorem 3.3]. O

3. Purity of Cy(X). Here we characterize purity of Cy(X) using the subspace kX.
But first we need some preliminaries.

PROPOSITION 3.1 (see [1, Theorem 3.2]). For each space X, the ideal Ck (X) is pure
if and only if coz Cx (X) = U recp ) S ().

It was proved in [11, Theorem 2.4] that an ideal I in C(X) is pure if and only if
I = O” where A is a unique closed subset of fX. In fact, it was proved that A must be
the set (¢ Clpx Z(f) = 6(I). Here we show that if the ideal O4 is pure, then A need
not be closed, but 04 = O%sx4,

THEOREM 3.2. The ideal O* is pure if and only if 0A = O%8x4,

PROOF. Suppose that O is pure and f € O*. Then there exists g € O4 such that
f = fg.So f8 = fBgP which implies that S(f#) < cozgh. Hence A c Intgx Z(g#) <
Z(gP) < BX-S(fB) = Z(fB). Thus clgx A c Z(gP) < BX —S(f#) < Intgx Z(f#) which
implies that f € O%x4, O

In the following theorem we characterize purity of the ideal Cy (X) using properties
of the subspace kX.
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THEOREM 3.3. The following statements are equivalent:
(1) Cy(X) is pure;

(2) Cy(X) = OBX-kX;

(3) BX — kX is a round subset of BX.

PROOF. (1)=(2). Cy(X) is pure if and only if Cy(X) = OBX-vX = Q¢lpx(BX-0X) _
OPX-IntgxvX — OBX—kX gee Proposition 2.2 and Theorem 3.2 above.

(2)=(3). MPX-KX o OBX-KX = Cy(X) = MPX-0X o MBX-kX So BX — kX is a round
subset of SX.

(3)=(1). OUlpx(BX—0X) _ oBX-IntgxyvX _ OBX-kX — ppBX—kX — prclpx(BX—vX) _ prBX-vX —
OBX-vX = Cy(X). So it follows by Theorem 3.2 that Cy (X) is pure. O

The following result will be extremely useful throughout the rest of the paper.
COROLLARY 3.4. Theideal Cy(X) is pureif and only if for each f € Cy (X), S(f") ckX.

PROOF. Theideal Cy(X) is pure if and only if Cx (vX) is pure if and only if for each
feCy(X),S(fY) c kX, see Propositions 1.1 and 3.1. |

COROLLARY 3.5. The space YX is locally compact if and only if X < kX and Cy (X)
is pure.

PROOF. The result follows from Theorems 2.6 and 3.3. O

It was shown in [1, Theorem 3.2] that Cg(X) is pure if and only if cozCx(X) =
U reck ) S(f). Now, if Cy (X) is pure, then it is easy to see that

cozCy(X)= |J S). (3.1)

feCy(X)

This raises the following question: suppose that coz Cy (X) = UfeC\y(X) S(f), does this
imply that Cy (X) is pure? The following example shows that this need not be true.

EXAMPLE 3.6. Let W* = [0,w;] be the set of all ordinals less than or equal to
the first uncountable ordinal number w;. Let W = [0, w;) and T* = W* X N*, where
N* denote the one point compactification N U {wo} of the natural numbers. Let t =
(w1,wq), T=T*—-{t}, let A =Wx {wo} and let B = {w;} X N. Let S be obtained
from T x N by identifying A x {2n — 1} with A x {2n} and identifying B x {2n} with
Bx{2n+1}. Then S is locally compact, since T is, and AnB = O, see [7, Example 7.3]
and [9, page 240]. Let H be obtained from T* x N by identifying (Au {t}) x {2n -1}
with (AU {t}) x {2n} and identifying (Bu {t}) x {2n} with (BuU {t}) X {2n + 1}. Now,
H is o-compact and so it is realcompact. H is not locally compact since (w1, wg,n)
has no compact neighborhood for each n € N. So S < kS < vS < H. Define f:S - R
by f(x,n,1) = 1/n for all x € W*, n € N and by zero otherwise. Then coz f = W* X
N x {1} and S(f) = Tx {1} is pseudocompact, noncompact. So f € Cy(S) — Cx(S),
which implies that S is not Y-compact. Hence kS = S =+ ¥S. Therefore, ¥S is not locally
compact. So it follows by Corollary 3.5 that Cy(S) is not pure although S is locally
pseudocompact and coz Cy(S) =S = Usec, S(f).

4. Some applications. In this section, we use the characterization obtained in
Theorem 3.3 and Corollary 3.4 above for purity of the ideal Cy(X) to characterize
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when Cy (X) is a projective C(X)-module, when every principal ideal of Cy (X) is pro-
jective or flat C(X)-module, and for which spaces X and Y, the two ideals Cy (X) and
Cy (Y) are isomorphic.

THEOREM 4.1. Let Cy(X) and Cy(Y) be pure ideals. Then Cy(X) is isomorphic to
Cy(Y) if and only if kX is homeomorphic to kY .

PROOF. If Cy(X) isisomorphic to Cy(Y), then kX is homeomorphic to kY, see [12,
Corollary 4.11].

For the converse, we prove that Cx(vX) is isomorphic to Cx(vY), then the result
follows from Proposition 1.1.

Suppose @ : kX — kY is a homeomorphism. Let f € Cx(vY), then f) o @ € C(kX),
where fi = f,, . But coz f = @ (coz(f, o)), which implies that ¢ ~! (coz f) = coz(f1° @).

Therefore clgy coz(f) o @) = cxx @~ (cozf) = ~LH(S(f)), since S(f) is contained
in kY by the purity of Cy(Y). Now, for each f € Cx (vX) define

fiop(x), xekX,
X B b _ 4.1
!]j v ygf(x) {0’ xEUX—(p_l(S(f))' ( )

Then, gr € Cx(vX), since S(gy) = clgxcoz(fi o @) is compact.

Define @ : Cx (vY) — Cx(vX) by @(f) = gr. Then @ is a ring homomorphism. It
remains to show that ¢ is bijective.

To see that @ is one-to-one, suppose @ (f) = 0. Then f; o@(x) = 0 for every x € kX.
But coz(fi o @) = @ (cozf), and so ¢ !(coz f) = &. Therefore f = 0.

To see that @ is onto, let f € Cx(vX). Define

fe@ l(y), yeky,
:0Y — R byg(y)= (4.2)
7 P {0, y oY - (S(f).

Then g € C(vY), since @(S(f)) is compact. Here again we use the purity of Cy(X),
since we assumed that S(f) < kX. Moreover, if g(y) + 0, then ' (y) € cozf. So
cozg € @(cozf).

Thus, clgy cozg < clyy @ (coz f) = @(clyxcoz f) = (S(f)).Hence S(g) = clyy cozg
is compact. It follows that g € Cx (vY).

Finally, note that

5(g) (x) = gr1o@(x), x €KX,
PR, XX - 1(S(9));
| fe@Tlo@(x), xe€kX,
o, x€vX-@ 1 (S(9); 4.3)
B f(x), xekX,
B 0, otherwise;
= f(x).

Thus @ (g) = f and so @ is onto. Hence Cx (vX) is isomorphic to Cx (vY). O
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Here we characterize when Cy (X) is a projective C(X)-module.

THEOREM 4.2. The ideal Cy(X) is a projective C(X)-module if and only if kX is
paracompact and Cy (X) is pure.

PRrROOF. It was proved by Brookshear [3, Theorem 3.10] that Cx (X) is a projective
C(X)-module if and only if coz Ck (X) is paracompact and S(f) < cozCk(X) for each
f € Cx(X). Our result now follows from Proposition 3.1 and Corollaries 2.4 and 3.4.

O

It was proved in [2, Lemma 2] and [3, Corollary 2.5] that the principal ideal (f) is a
projective (flat) C(X)-module if and only if S(f) is clopen in X (Ann(f) is pure). We
can use this result to determine when the principal ideal (f) is a projective or a flat
C(X)-module for each f € Cy(X).

THEOREM 4.3. Foreach f € Cy(X), the ideal (f) is a projective C(X)-module if and
only if Cy (X) is pure and kX is basically disconnected.

PROOF. Suppose that kX is basically disconnected and Cy(X) is pure. Let f €
Cy(X). Then S(fY) < kX since Cy(X) is pure. Now let f) = fYxx and note that
clgx (kX — Z(f1)) = S(fY). Since kX is basically disconnected, S(fV) is open in kX
and therefore it is open in vX (cf. Proposition 2.2). Thus S(f) = S(fY) n X is open
in X. Hence the ideal (f) is a projective C(X)-module.

Conversely, suppose that every principal ideal of Cy (X) is a projective C (X)-module.
For each f € Cy(X), S(f) is open in X, so define

1
g(x)—<| » XESU), (4.4)

0, otherwise.

Then g € Cy(X) and f = fg. Thus Cy(X) is a pure ideal.

To demonstrate basic disconnectedness, we first show that for each f € Cx(kX),
S(f) is clopen. Then we will use this result to show that for each k € C(kX), S(k) is
clopen.

Let f € Cx(kX). Then f can be extended to a function F € Cg (vX) with clgy (kX —
Z(f)) = S(F) which is open, since Cy(X) is isomorphic to Cx (vX).

Now, let k € C(kX), and a € clgx(kX — Z(k)) < kX. So there exists an open set
U such that U is compact, and a € U c U < kX. There exists f € C(kX) such that
f(a)=1and f(kX—-U) =0. Then f € Cg(kX).

Thus a € (kX - Z(f)) nclix (kX — Z(k)) € clgx((kX — Z(f)) nclgx (kX — Z(k))) =
clix (KX —=Z(f))n(kX—Z(k))) =clgx (kX —Z(fk)) < clgx (kX — Z(k)). But clgx (kX —
Z(fk)) is compact, and so is clopen since fk € Cx(kX). So, clgx (kX —Z(k)) is clopen
in kX. Thus kX is basically disconnected. |

THEOREM 4.4. Let X be a space such that Cy(X) is pure. Then for each f € Cy(X)
the principal ideal (f) is a flat C(X)-module if and only if kX is an F'-space.

PROOF. Suppose that kX is an F'-space, f € Cy(X) and g € Ann(f). Let f1 = fYxx
and g; = gV kx. Then (kX —-Z(f1))N(kX—-Z(g1)) = D.S0, clgx (kX —Z(f1)) Nclgx (kX —
Z(g1)) = @, since kX is an F’-space. But S(fV) = clgx (kX — Z(f1)), since Cy(X) is
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pure and S(fV) € kX. Now if x € S(fY), then x € clyx (kX — Z(f1)), which implies
that x ¢ clgx (kX — Z(g1)). So there exists an open set U < kX such that x € U and
Un(kX—-Z(g:1)) = Q. Therefore x € U < Z(g:1) < Z(g'). But U is open in vX, since
kXis.SoUn(vX-Z(g")) = @, which implies that x ¢ S(g"). Thus S(f')nS(g?) = @.

The compactness of S(fV) implies that there exists k € C(vX) such that k’(S(f"))
=0and kY(S(g")) =1.So, k € Ann(f), and g = gk. Thus the ideal (f) is a flat C(X)-
module since Ann(f) is pure.

Conversely, suppose that the principal ideal (f) is a flat C(X)-module for each f €
Cy(X). Let g,k € C(kX) such that gk = 0. Suppose y € clgx (kX —Z(g)) nclgx (kX —
Z(k)). There exists f; € Ckx(vX) such that fi(y) = 0. Let f = filkx, then y €
clix (kX —Z(fg)) nclgx (kX —Z(fk)). Define

fa(x), xedix(kX-Z(fg)),
hi(x) =
0, xeuvX—(kX-Z(fg));
(4.5)
fk(x), xecdx(kX-Z(fk)),
hy(x) =
0, x € vX—(kX-Z(fk)).

Then hy,hy € Cx(vX), since S(h;) and S(hy) are compact sets. Moreover, hih, = 0.
So, there exists h1 € Ann(hy) such that h, = hlhrl. Hence y € clyx (kX —Z(fg)) =
S(hy) < cozh;. But h1 (S(h2)) =0,s0y ¢ S(hy) = clgx (kX —Z(fk)), a contradiction.
Hence clyx (kX —Z(g)) nclgx (kX —Z(k)) = @ and kX is an F’-space. O

EXAMPLE 4.5. Let X = [—1,1] with all its points isolated, except for x = 0 it has
its usual nbhds. Then X is regular, paracompact, and consequently realcompact. So
X =vXand kX = X - {0} c X.

Let

1 *
X, X=—,nelz”,
f(x)={ n (4.6)

0, otherwise.

Then S(f) = {1/n:n e 7Z*}u{0}.So f € Cy(X) and S(f) is not contained in kX. So
Cy (X) is not a pure ideal.

The set S(f) is not open, so the ideal (f) is not projective. Ann(f) is not pure, since
the function

0, x= l, nez*,
g(x) = n 4.7)

x, otherwise,

belongs to Ann(f), but S(g) = X —{1/n : n € Z*} is not a subset of cozAnn(f),
since for each h € Ann(f), h(0) = 0. So the ideal (f) is not a flat C(X)-module. Let
Y = X - {0}, then kX =Y = kY, but Cy(X) is not isomorphic to Cy (Y), since the latter
is pure.

This example shows that Theorems 4.1, 4.2, 4.3, and 4.4 need not be true if Cy (X)
is not pure.
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