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SCHRÖDINGER OPERATORS WITH A SINGULAR POTENTIAL

TOKA DIAGANA

Received 13 April 2001

This note is devoted to the study of some Schrödinger operators with a singular real po-
tential Q. The potential Q is chosen so that the algebraic sum L = −∆+Q is not defined.
Next, we define the sum form operator which will be well defined and we show that this
operator verifies the well-known Kato’s square root problem.
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1. Introduction. Let H be a Hilbert space and let A and B be two unbounded linear

operators on H. The algebraic sum of A and B is defined by

D(A+B)=D(A)∩D(B), (A+B)u=Au+Bu, ∀u∈D(A)∩D(B). (1.1)

Thus, if A and B are chosen so that D(A)∩D(B) is reduced to {0}, therefore the

algebraic sum of A and B is not defined except in zero. So, the algebraic sum is not

always well adapted to problems arising in mathematical analysis. This has motivated

some mathematical developments where the notion of sum is weakened or relaxed,

see for example [2, 3, 4]. Consider A and B be two linear operators given on L2(R) by

D(A)=H2(Rn), Au=−∆u,
D(B)= {u∈ L2(Rn) :Qu∈ L2(Rn)}, Bu=Qu,

(1.2)

where Q is a measurable real function. Let L be the operator of Schrödinger given

by L = −∆+Q. Let Φ and Ψ be the closed and densely defined sesquilinear forms

associated, respectively, to −∆ and Q, given by

Φ(u,v)=
∫
Rn
∇u∇vdx, ∀u,v ∈H1(Rn),

Ψ(u,v)=
∫
Rn
Quv̄dx, ∀u,v ∈D(B1/2).

(1.3)

We will put, Υ(u,v) = (Φ+Ψ)(u,v) for all u,v ∈ D(Υ) = D(Φ)∩D(Ψ), the sum of

sesquilinear forms associated to −∆ and Q.

2. The main result

Hypothesis on Q. We assume that the potential Q verifies HQ, given by

Q> 0, Q∈ L1(Rn), Q �∈ L2
loc

(
Rn
)
. (2.1)
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Proposition 2.1. Under hypothesis HQ and if n< 4, then,

D(A)∩D(B)= {0}. (2.2)

Proof. Let u ∈ D(−∆)∩D(Q) and suppose that u �≡ 0. Since u ∈ H2(Rn) where

n< 4, then u is a continuous function by Sobolev’s theorem (see [1]). There exists an

open subset Ω of Rn and there exists δ > 0 such that |u(x)|> δ for all x ∈Ω. Let Ω′

be a compact subset of Ω, equipped with the induced topology by Ω. Thus Ω′ is also

a compact subset of Rn. It follows that

|Q|Ω′ =
(|Qu|)Ω′
|u|Ω′ ∈ L2(Ω′), (2.3)

because (|Qu|)Ω′ ∈ L2(Ω′) and 1/(|u|)′Ω ∈ L∞(Ω′). Therefore Q ∈ L2(Ω′), that is im-

possible according to hypothesis HQ, then u≡ 0.

Question 2.2. Find a characterization of D(−∆)∩D(Q), when n≥ 4?

Proposition 2.3. Under hypothesis HQ, then

• D(A1/2)↩D(B1/2) if n= 1,
• D(A1/2)∩D(B1/2)⊇ C∞0 (Rn) if n> 1.

Example of potential Q verifying HQ. Let Ω be a compact subset of Rn and

let G be a complex function satisfying, ReeG > 0, G ∈ L1(Ω), G �∈ L2(Ω), and G ≡ 0

on Rn−Ω. Consider the following rational sequence αk = (α1
k,α

2
K, . . . ,α

n
k )∈Qn. Then

the function Q, given by

Q(x)=
+∞∑
k=1

G
(
x−αk

)
k2

, (2.4)

verifies hypothesis HQ.

3. Generalized sum of A and B. Consider the closed sesquilinear forms given by

Φ(u,v)=
∫
Rn
∇u∇vdx ∀u,v ∈H1(Rn),

Ψ(u,v)=
∫
Rn
Quv̄dx ∀u,v ∈D(B1/2),

(3.1)

and the sum of the forms Φ and Ψ given by, Υ = Φ+Ψ , in other words, Υ(u,v) =∫
Rn(∇u∇v +Quv̄)dx for all u,v ∈ D(A1/2)∩D(B1/2). The sesquilinear form Υ is

a closed sectorial and densely defined form as sum of closed sectorial and densely

defined forms, then there exists a uniquem-sectorial operator A⊕B, called sum form

or generalized form of A and B associated to Υ (see[3, 4]) and Υ has the following

representation:

Υ(u,v)= 〈(A⊕B)u,v〉 ∀u∈D(A⊕B), v ∈D(A1/2)∩D(B1/2). (3.2)

According to [3], the operator A⊕B verifies the well-known condition of Kato (see [4]),

in other words,

D
(
(A⊕B)1/2)=D(Υ)=D(((A⊕)∗)1/2

)
, (3.3)
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and the operator A⊕B is given by

D(A⊕B)= {u∈H1(Rn) :Q|u|2 ∈ L1(Rn), −∆u+Qu∈ L2(Rn)},
(A⊕B)u=−∆u+Qu. (3.4)
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