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We describe a Galerkin method with special basis functions for a class of singular two-
point boundary value problems. The convergence is shown which is of O(h2) for a certain
subclass of the problems.
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1. Introduction. We consider the class of singular two-point boundary value prob-

lems:

− 1
p
(pu′)′ +f(x,u)= 0, 0<x < 1,

(pu′)
(
0+
)= 0, u(1)= 0.

(1.1)

We assume that the real-valued function p satisfies

p ≥ 0, p−1 ∈ L1
loc(0,1], p−1 ∉ L1

loc

(
[0,α)

)
for any α> 0, (1.2)

∫ 1

x
p−1 ∈ L1

p(0,1), that is,
∫ 1

0

(∫ 1

x

1
p(s)

ds
)
p(x)dx <∞. (1.3)

Note that (1.3) is clearly satisfied when p is an increasing function on (0,1). We also

assume that f(x,u) is continuous in u such that for any real u, f(·,u)∈ L∞p (0,1),

q(u,v,x)≡ f(x,u)−f(x,v)
u−v ≥ 0 for −∞<u, v <∞, u≠ v. (1.4)

The singular two-point boundary value problems of the form (1.1) occur frequently

in many applied problems, for example, in the study of electrohydrodynamics [9], in

the theory of thermal explosions [4], in the separation of variables in partial differ-

ential equations [11]; see also [1]. There is a considerable literature on the numerical

methods for the singular boundary value problems. Special finite difference meth-

ods were considered in Chawla et al. [5]. The Galerkin method for singular problems

was considered in Ciarlet et al. [6], Eriksson et al. [7], Jesperson [8]. Ciarlet et al. [6]

assumed that p(x) > 0 on (0,1), p ∈ C1(0,1), and p−1 ∈ L1(0,1). In this paper, we

address the problem with p−1 ∉ L1(0,1), and we assume that p ≥ 0, p−1 ∈ L1
loc(0,1);

see (1.2) and (1.3). We investigate a Galerkin method with the same special patch func-

tions considered by Ciarlet et al. [6] and we show that the method is of O(h2) when
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p is an increasing function on (0,1). The linear case with more general settings was

considered in [2] and a nonlinear case was considered in [3]. The special case consid-

ered here requires a different approach to establish its order of convergence and to

obtain the optimal order of convergence h2 under an easily checked condition on p;

namely that p is increasing on [0,1].

2. Preliminaries. Let I = (0,1) and H = L2
p(I) denote the weighted Hilbert space

with the inner product

〈u,v〉H =
∫
I
u(x)v(x)p(x)dx. (2.1)

Also let V be the Hilbert space consisting of functions u ∈ L2
p(I) which are locally

absolutely continuous on I, u(1)= 0, and u′ ∈ L2
p(I). The inner product on the space

V is defined by

〈u,v〉V =
∫
I
u′(x)v′(x)p(x)dx. (2.2)

The variational formulation of the problem (1.1) now follows:

Find u∈ V such that

a(u,v)= 0 ∀v ∈ V, (2.3)

where

a(u,v)≡ 〈u,v〉V +
∫ 1

0
f
(
x,u(x)

)
v(x)p(x)dx. (2.4)

It can be shown [3] that (1.1) and (2.3) have unique absolutely continuous (in [0,1])
solutions and that the weak solution of (2.3) coincides with the strong solution of (1.1).

3. The Galerkin approximation and convergence results. Let π : 0 = x0 < x1 <
···<xN+1 = 1 be a mesh on the interval [0,1] and, for i= 1,2, . . . ,N, define the patch

functions

ri(x)=


r−i (x) if xi−1 ≤ x ≤ xi,
r+i (x) if xi ≤ x ≤ xi+1,

0 otherwise,

(3.1)

where

r−1 (x)= 1,

r−i (x)=
∫ x
xi−1

(
1/p(s)

)
ds∫ xi

xi−1

(
1/p(s)

)
ds
, i= 2,3, . . . ,N,

r+i (x)=
∫ xi+1
x

(
1/p(s)

)
ds∫ xi+1

xi

(
1/p(s)

)
ds
, i= 1,2, . . . ,N.

(3.2)
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Define the discrete subspace VN of V by

VN = span
{
ri
}N
i=1. (3.3)

The discrete version of the weak problem (2.3) reads:

Find uG ∈ VN such that

a
(
uG,vN

)= 0 ∀vN ∈ VN. (3.4)

Note that (3.4) has a unique solution uG ∈ AC[0,1]. It follows from (2.3) and (3.4)

that

〈
u−uG,vN

〉
V +

∫ 1

0

f(x,u)−f (x,uG)
u−uG

(
u−uG)vNp = 0. (3.5)

Let q̃(x) be the unique function (because u and uG are unique) defined by

q̃(x)≡


f
(
x,u(x)

)−f (x,uG(x))
u(x)−uG(x) , u(x)≠uG(x)

0, u(x)=uG(x).
(3.6)

We assume that f is such that

Cq̃ :=
∫ 1

0
q̃(x)

∫ 1

x

ds
p(s)

p(x)dx <∞. (3.7)

This is the case for example if f satisfies a Lipschitz condition in its second argument

(see (1.3)). We can now state our results on the convergence of the Galerkin solution

uG to the weak solution u of (2.3).

Theorem 3.1. The following relation holds:

∥∥uG−u∥∥∞ ≤ (1+4Cq̃
)∥∥f (·,u(·))∥∥∞�(πN), (3.8)

where �(πN) is given by

�
(
πN

)= max
0≤i≤N

∫ xi+1

xi

(∫ xi+1

s

1
p(t)

dt
)
p(s)ds. (3.9)

Corollary 3.2. If p is increasing then the method is O(h2) where

h= max
0≤i≤N

(
xi+1−xi

)
. (3.10)

Remark 3.3. The absolute continuity of the solution u and the continuity of f
imply that ‖f(·,u(·))‖∞ <∞ in the above expression for the error.
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4. Proof of the results. Let

uG(x)=
N∑
i=1

αiri(x) (4.1)

be the Galerkin approximation and uI be the VN -interpolant of the solution u given

by

uI(x)=
N∑
i=1

uiri(x), (4.2)

where ui = u(xi) and ri is given by (3.1), i = 1, . . . ,N. We note here that uI is the

orthogonal projection of u with respect to the inner product 〈· ,·〉V :

〈
u−uI,vN

〉
V = 0 (4.3)

for all vN ∈ VN . The following relation is also easily checked (using (3.5) and (4.3))

〈
uG−uI,vN

〉
V =

〈
q̃
(
u−uG),vN〉p, (4.4)

for all vN ∈ VN . We have the following lemma.

Lemma 4.1. The following relation holds:

∥∥u−uI∥∥∞ ≤ ∥∥f (·,u(·))∥∥∞�(πN). (4.5)

Proof. For any x ∈ [xi,xi+1], i= 0,1, . . . ,N

u(x)−uI(x)≤
∫ xi+1

xi

∣∣g(s)∣∣(∫ xi+1

s

dt
p(t)

)
p(s)ds, (4.6)

where g(s)=−f(s,u(s)). To see this we consider two cases: i= 0 and i≥ 1.

For i= 0, that is, for x ∈ [0,x1] we have

u(x)−uI(x)=u(x)−u(x1
)

=
∫ x1

x

1
p(s)

∫ s
0
g(t)p(t)dt

=
∫ x1

x

ds
p(s)

∫ x
0
g(s)p(s)ds+

∫ x1

x
g(s)p(s)

∫ x1

s

dt
p(t)

ds

≤
∫ x

0

∣∣g(s)∣∣p(s)∫ x1

s

dt
p(t)

ds+
∫ x1

x

∣∣g(s)∣∣p(s)∫ x1

s

dt
p(t)

ds

=
∫ x1

0

∣∣g(s)∣∣∫ x1

s

dt
p(t)

p(s)ds.

(4.7)
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It can be shown, using the fact
∑N
i=1 ri(x) = 1 and integrating by parts, that for x ∈

[xi,xi+1], i= 1, . . . ,N,

u(x)−uI(x)

= r+i (x)
∫ x
xi

(∫ s
xi

dt
p(t)

)
g(s)p(s)ds+r−i+1(x)

∫ xi+1

x

(∫ xi+1

s

dt
p(t)

)
g(s)p(s)ds

=
∫ xi+1
x ds/p(s)∫ xi+1
xi ds/p(s)

∫ x
xi

(∫ s
xi
dt/p(t)

)
g(s)p(s)ds

+
∫ x
xids/p(s)∫ xi+1
xi ds/p(s)

∫ xi+1

x

∫ xi+1

s

dt
p(t)

g(s)p(s)ds

≤
(∫ xi+1

x

ds
p(s)

)∫ x
xi

∣∣g(s)∣∣p(s)ds+∫ xi+1

x

∫ xi+1

s

dt
p(t)

∣∣g(s)∣∣p(s)ds
≤
∫ x
xi

∣∣g(s)∣∣p(s)∫ xi+1

s

dt
p(t)

ds+
∫ xi+1

x

∫ xi+1

s

dt
p(t)

∣∣g(s)∣∣p(s)ds
=
∫ xi+1

xi

∣∣g(s)∣∣∫ xi+1

s

dt
p(t)

p(s)ds

(4.8)

The result thus follows.

Proof of Theorem 3.1. In (4.4) taking vN = ri for i= 1, . . . ,N, we obtain

〈
uG−uI,ri

〉
V =

〈
q̃
(
u−uG),ri〉p, (4.9)

which can be written as

N∑
j=1

[〈
rj,ri

〉
V +

〈
q̃rj,ri

〉
p
](
αj−uj

)= 〈q̃(u−uI),ri〉p. (4.10)

This gives the system

(A+Q)e= d, (4.11)

where A= (aij)= (〈ri,rj〉V ) is a symmetric and tridiagonal matrix given by

a11 = 1∫ x2
x1
(1/p(s))ds

,

aii = 1∫ xi
xi−1

(1/p(s))ds
+ 1∫ xi+1

xi (1/p(s))ds
, i= 2, . . . ,N,

ai,i+1 =− 1∫ xi+1
xi (1/p(s))ds

, i= 1, . . . ,N−1,

(4.12)
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Q =(qij)= (〈q̃rj,ri〉p), e= (ei)= (αi−ui), and d = (di) is given by

d1=
∫ x1

x0

h(s)p(s)ds+
∫ x2
x1
h(s)p(s)

∫ x2
s (dt/p(t))ds∫ x2

x1
dt/p(t)

di=
∫ xi
xi−1

h(s)p(s)
∫ s
xi−1

(dt/p(t))ds∫ xi
xi−1

dt/p(t)
+
∫ xi+1
xi h(s)p(s)

∫ xi+1
s (dt/p(t))ds∫ xi+1

xi dt/p(t)
, i>1,

(4.13)

where h(s) stands for q̃(s)(u(s)−uI(s)). Now A is an M-matrix, qij ≥ 0 (see (1.4)),

qij <−aij(i≠ j) for sufficiently small mesh size and therefore, A+Q is an M-matrix

with (A+Q)−1 ≤ A−1 (see Ortega [10]). Thus |e| ≤ A−1|d|. The inverse of the matrix

A, denoted by B= (bij), can be explicitly written as

bij =



∫ 1

xj

ds
p(s)

if i≤ j,
∫ 1

xi

ds
p(s)

if i≥ j.
(4.14)

Therefore,

∣∣ei∣∣≤ N∑
j=1

bij
∣∣dj∣∣

=
i∑
j=1

∫ 1

xi

ds
p(s)

∣∣dj∣∣+ N∑
j=i+1

∫ 1

xj

ds
p(s)

∣∣dj∣∣
≤

N∑
j=1

∫ 1

xj

ds
p(s)

∣∣dj∣∣.
(4.15)

We see that∫ 1

x1

ds
p(s)

∣∣d1

∣∣≤ ∫ 1

x1

ds
p(s)

∫ x1

x0

∣∣h(s)∣∣p(s)ds+∫ 1

x1

ds
p(s)

∫ x2
x1

∣∣h(s)∣∣p(s)∫ x2
s (dt/p(t))ds∫ x2

x1
dt/p(t)

=
∫ 1

x1

ds
p(s)

∫ x1

x0

∣∣h(s)∣∣p(s)ds+∫ x2

x1

ds
p(s)

∫ x2
x1

∣∣h(s)∣∣p(s)∫ x2
s (dt/p(t))ds∫ x2

x1
dt/p(t)

+
∫ 1

x2

ds
p(s)

∫ x2
x1

∣∣h(s)∣∣p(s)∫ x2
s (dt/p(t))ds∫ x2

x1
dt/p(t)

≤
∫ 1

x1

ds
p(s)

∫ x1

x0

∣∣h(s)∣∣p(s)ds+∫ x2

x1

∣∣h(s)∣∣p(s)∫ x2

s

dt
p(t)

ds

+
∫ 1

x2

ds
p(s)

∫ x2

x1

∣∣h(s)∣∣p(s)ds
=
∫ 1

x1

ds
p(s)

∫ x1

x0

∣∣h(s)∣∣p(s)ds+∫ x2

x1

∣∣h(s)∣∣p(s)∫ 1

s

dt
p(t)

ds

≤
∫ x1

x0

∣∣h(s)∣∣p(s)∫ 1

s

dt
p(t)

ds+
∫ x2

x1

∣∣h(s)∣∣p(s)∫ 1

s

dt
p(t)

ds.

(4.16)
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Also for j = 2, . . . ,N, by a similar approach, we have

∫ 1

xj

ds
p(s)

∣∣dj∣∣≤ ∫ 1

xj

ds
p(s)

∫ xj
xj−1

∣∣h(s)∣∣p(s)ds
+
∫ 1

xj

ds
p(s)

∫ xi+1
xi

∣∣h(s)∣∣p(s)∫ xi+1
s

(
dt/p(t)

)
ds∫ xi+1

xi dt/p(t)

≤
∫ xj
xj−1

∣∣h(s)∣∣p(s)∫ 1

s

dt
p(t)

ds+
∫ xj+1

xj

∣∣h(s)∣∣p(s)∫ 1

s

dt
p(t)

ds.

(4.17)

Substituting these two inequalities in (4.15) we obtain

∣∣ei∣∣≤ ∫ xN
x0

∣∣h(s)∣∣p(s)∫ 1

s

dt
p(t)

ds+
∫ xN+1

x1

∣∣h(s)∣∣p(s)∫ 1

s

dt
p(t)

ds

≤ 2
∫ 1

0

∣∣h(s)∣∣p(s)∫ 1

s

dt
p(t)

ds

= 2
∫ 1

0

∣∣q̃(s)(u(s)−uI(s))∣∣p(s)∫ 1

s

dt
p(t)

ds.

(4.18)

Thus using (3.7), we have

max
1≤i≤N

∣∣αi−ui∣∣≤ 2Cq̃
∥∥u−uI∥∥∞. (4.19)

It can be shown that

∥∥uG−uI∥∥∞ ≤ 2 max
1≤i≤N

∣∣αi−ui∣∣. (4.20)

Therefore,

∥∥u−uG∥∥∞ ≤ ∥∥u−uI∥∥∞+∥∥uG−uI∥∥∞
≤ ∥∥u−uI∥∥∞+2 max

1≤i≤N
∣∣ui−αi∣∣

≤ (1+4Cq̃
)∥∥u−uI∥∥∞.

(4.21)

The result thus follows from Lemma 4.1.

5. Example. In this section we give examples which are solved by the Galerkin

method just described above with equal mesh size h. We then compare the results

with the actual solutions.

Example 5.1. We consider the boundary value problem

− 1
x
(
xu′

)′ +eu = 0, 0<x < 1, u′(0)=u(1)= 0. (5.1)
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The exact solution is known: u(x) = 2ln((1+β)/(1+βx2)), β = −5+2
√

6. It is seen

that ‖uG −u‖∞ = 0.188845× 10−2 for h = 0.1 and ‖uG −u‖∞ = 0.189× 10−4 for

h = 0.01. According to the Corollary 3.2 the method is O(h2) which is reflected in

these results.

Example 5.2. We consider the equation

− 1
xα

(
xαu′

)′ + β2x2β−2

5
(
4+xβ)eu = β(α+β−1)xβ−2

4+xβ(
xαu′

)(
0+
)= 0, u(1)= 0.

(5.2)

The exact solution is u= ln5− ln(4+xβ). The following results were obtained:

Table 5.1

α β h ‖uG−u‖∞
0.5 2 0.02 1.0299×10−4

0.5 2 0.01 2.6147×10−5

1.0 2 0.02 9.9647×10−5

1.0 2 0.01 2.4913×10−5

2.0 6 0.02 3.4133×10−4

2.0 6 0.01 8.6170×10−5

Remark 5.3. Our method does not differentiate between 0<α< 1 and α≥ 1 as is

the case in many articles in the literature.
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