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We describe a Galerkin method with special basis functions for a class of singular two-
point boundary value problems. The convergence is shown which is of O (h?) for a certain
subclass of the problems.
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1. Introduction. We consider the class of singular two-point boundary value prob-
lems:

—%(pu’)’wtf(x,u) =0, 0<x<1,

(1.1)
(pu)(07) =0, u(1)=0.
We assume that the real-valued function p satisfies
p=0, plell (0,1], p'é¢LL.([0,00) forany «>0, (1.2)
1 ) . 1 1 1
~+elL,(0,1), thatis, J <I —ds) xX)dx < . 1.3
Jx p p( ) 0 x p(s) p(x) ® (1.3)

Note that (1.3) is clearly satisfied when p is an increasing function on (0,1). We also
assume that f(x,u) is continuous in u such that for any real u, f(-,u) € Ly (0,1),

q(u,v,x)zWaO for —co < U, UV < oo, U * V. (1.4)

The singular two-point boundary value problems of the form (1.1) occur frequently
in many applied problems, for example, in the study of electrohydrodynamics [9], in
the theory of thermal explosions [4], in the separation of variables in partial differ-
ential equations [11]; see also [1]. There is a considerable literature on the numerical
methods for the singular boundary value problems. Special finite difference meth-
ods were considered in Chawla et al. [5]. The Galerkin method for singular problems
was considered in Ciarlet et al. [6], Eriksson et al. [7], Jesperson [8]. Ciarlet et al. [6]
assumed that p(x) > 0 on (0,1), p € C'(0,1), and p~! € L'(0,1). In this paper, we
address the problem with p~! ¢ L'(0,1), and we assume that p >0, p~! € L} .(0,1);
see (1.2) and (1.3). We investigate a Galerkin method with the same special patch func-
tions considered by Ciarlet et al. [6] and we show that the method is of O (h?) when
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p is an increasing function on (0,1). The linear case with more general settings was
considered in [2] and a nonlinear case was considered in [3]. The special case consid-
ered here requires a different approach to establish its order of convergence and to
obtain the optimal order of convergence h? under an easily checked condition on p;
namely that p is increasing on [0,1].

2. Preliminaries. Let I = (0,1) and H = L’,f,([ ) denote the weighted Hilbert space
with the inner product

(u,v)g = Lu(x)v(x)p(x)dx. (2.1)

Also let V be the Hilbert space consisting of functions u € L%(I ) which are locally
absolutely continuous on I, u(1) =0, and u’ € L,f, (I). The inner product on the space
V is defined by

(u,v)y = Lu’(x)v'(x)p(x)dx. (2.2)

The variational formulation of the problem (1.1) now follows:
Find u € V such that

a(u,v)=0 VveV, (2.3)

where
1
a(u,v) = (u,v)V+J0 Flx,ux))v(x)p(x)dx. (2.4)

It can be shown [3] that (1.1) and (2.3) have unique absolutely continuous (in [0,1])
solutions and that the weak solution of (2.3) coincides with the strong solution of (1.1).

3. The Galerkin approximation and convergence results. Let 1:0 = xo < X1 <
- < xXn+1 = 1 be amesh on the interval [0,1] and, for i = 1,2,...,N, define the patch
functions

v (x) if xio <x < xy,

ri(x) =qrt(x) if x; <x < x4, (3.1)
0 otherwise,
where
1 (x) =1,
Iy, (1/p(s))ds
i ‘— i =2,3,...
o= L (1/p(s))ds’ PN, (3.2)
[Z5(1/p(s))ds
+ v — =
¥ (x) = fx”l(l/p(s))ds’ 1,2,...,N
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Define the discrete subspace Vy of V by

VN = span{n}il. (3.3)
The discrete version of the weak problem (2.3) reads:
Find u¢ e Vy such that
a(u®,vy) =0 VYuy e V. (3.4)

Note that (3.4) has a unique solution u¢ € AC[0,1]. It follows from (2.3) and (3.4)
that

G

(u—u®vn)y (u—u)vyp =0. (3.5)

+ lf(x’u)_f(x’uG)
0

u—uc
Let g (x) be the unique function (because u and u¢ are unique) defined by

B G
f(x,u(x)) fgx,u (X)), w(x) % 1 (x)
F(x) = ux) —ub(x) (3.6)

0, u(x) =ub(x).

We assume that f is such that

. 1~ lﬂ
Cy:= JO q(x) L ) p(x)dx < oo. (3.7)

This is the case for example if f satisfies a Lipschitz condition in its second argument
(see (1.3)). We can now state our results on the convergence of the Galerkin solution
uC to the weak solution u of (2.3).

THEOREM 3.1. The following relation holds:
[u€ —ull, = (L+4C)[1f (L, u) [l € (), (3.8)

where £(1ty) is given by

£(1ty) = max in+1 (

0<i<N Jx;

Xivl ]
L p(t)dt)p(s)ds. (3.9)

COROLLARY 3.2. Ifp is increasing then the method is O (h?) where

h = max (x;11—x;). (3.10)
0<i<N

REMARK 3.3. The absolute continuity of the solution u and the continuity of f
imply that || f(-,u(-))]le < oo in the above expression for the error.
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4. Proof of the results. Let

N
u®(x) = > ori(x) (4.1)

i=1
be the Galerkin approximation and u’ be the Vy-interpolant of the solution u given

by

N
ul (x) = > uiri(x), (4.2)
i=1

where u; = u(x;) and 7; is given by (3.1), i = 1,...,N. We note here that u! is the
orthogonal projection of u with respect to the inner product (-, -)y:

(u—u',vn)y =0 (4.3)

for all vy € Vi . The following relation is also easily checked (using (3.5) and (4.3))

(U —ul,un)y = (@ (u-u),vn),, (4.4)
for all vy € Viy . We have the following lemma.
LEMMA 4.1. The following relation holds:
lu =l < |lF (- u()||L(my). (4.5)
PROOF. For any x € [x,Xx;41),i=0,1,...,N
I Xi+1 Xitl At
e -wlo) < [ g ([T e, 4.6)
i s P(t)

where g(s) = —f(s,u(s)). To see this we consider two cases: i =0 and i > 1.
For i = 0, that is, for x € [0,x;] we have

ulx) —ul(x) =ux)—u(x)
X1 1 s
- |, s ) ewpar

ZJ:‘ p‘fﬁj g(s)p(S)dS+J g(s)vmf wds 4.7)

SLX\Q(SHP(S)L Wdﬁj |g(S)|P(S)J (t)

X1 X1 dt
-, towl ], s
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It can be shown, using the fact ¥ | #;(x) = 1 and integrating by parts, that for x €
[Xiyxi+1:|! i= 1;---,N,

u(x) —ul(x)

- Tﬁ(x)E (

Sodt Xi+1 Xitl At
Llp(t))g(S)p(s)dsH’m(x)J (J p(t))gmp(s)ds

s p(s) L( Atp®) Ja(©)p(s)ds
fodS/P(S) Xivl (Xisl  Jt
[ ds p(s) J I (t)g(S)P(S)ds
Xitl ds i+l (Xitl  Jt
<<L p(@)f |Q(S)|10(S)dS+J J (t)|g(5)|p(s)d5

SL:|Q(S)|I7(S)JSXi s [ [T g psras

:r”l [9(s) IJ N (t)p(s)ds

(4.8)
The result thus follows. O
PROOF OF THEOREM 3.1. In (4.4) taking vy =7; fori=1,...,N, we obtain
<uG_uI!Ti>V: <a(u_uc)!7’i>pl (49)
which can be written as
N
Z (rjsridy +{ar,vi),) (o —u;) = (G (u—u'),r),. (4.10)
This gives the system
(A+Q)e=d, (4.11)
where A = (a;j) = ({r;,7;)v) is a symmetric and tridiagonal matrix given by
PR S
U sps)ds’
ai = 1 + 1 i=2 N 4.12
11 J';(llil(]_/p(s))ds L}((;Jrl(l/p(s))dsv yreey ’ ( . )
Aii+1 = ! =1,...,N-1,

R asp(s)ds’
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Q =(qij) = ({qrj,7i)p), € = (e;) = (®; —u;), and d = (d;) is given by

! S h(s)p(s) [ (dt/p(t))ds
d, = . h(s)p(s)ds + Lffdt/p(t)
fxl lh(s)lﬂ(s)fx (dt/P(t))dS+f§ii“h(5)p(s)ff‘“(dt/p(t))ds
fxi,ldt/p(t) J‘;Ci”'dt/p(t)

(4.13)

di= , ,
where h(s) stands for g(s)(u(s) —ul(s)). Now A is an M-matrix, qij = 0 (see (1.4)),
qij < —aij(i# j) for sufficiently small mesh size and therefore, A+Q is an M-matrix
with (A+Q)~! < A~! (see Ortega [10]). Thus |e| < A~1|d|. The inverse of the matrix
A, denoted by B = (b;;), can be explicitly written as

Jl —ds ifi<j
x; p(S) =)

J
= (4.14)
A
x; p(8) =7
Therefore,
N
lei| < > bijld;|
Jj=1
Nolods
—ZJ p(s) ;1 . pis %! (4.15)
N
g x; p(5)| J|
We see that
U ds Lods Uods 1) | p(s) [ at/p(t))ds
—|d h d
aple 4= xlp<s>J (h@lpds+] 05 St /p()
1 X2 ds Jyp [h(s)|p(s)[*(dt/p(t))ds
Ll p() ) |h(s)|r’(s)ds+L1 6] 2 dt/p()
Uods [ 1) |[p(s) [ (dt/p(t))ds
x2 P(5) [zrdt/p(t)
Llp(s) . |h(s)|p(s)ds+J |h(s)\p(5)J (t)

j p() |h(s)|P(S)ds
X2

1 x| ) 1
) pii)[ 'h“”'”(s)d“J h) o | T
X1

SJ |h(s)|p(s)J mds+J |h(s)|70(s)J (t)

(4.16)
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Also for j =2,...,N, by a similar approach, we have

s s)ds
xjp(s> L p(®) Jx, , HO1PO)
Uods R [p(s) [7 (dt /p (1)) ds w1
x; p(s) St /p(t) '
Xj Xj+1
< h(s sJ—d5+I h(s sJ—ds
L“| ©)|p) | SGrds+] e e |
Substituting these two inequalities in (4.15) we obtain
el <[ Ine)] ()J as+ [ nes)| Jl dt
eil < s s ———ds+ s s —
! X0 p p(t) X1 pis) s p(t)
<2J h J (4.18)
[h(s)|p(s) (t)
—ZJ [G(s)(u(s) —ul(s)) |p(s)J st
Thus using (3.7), we have
max | o - ui| <2G4|lu—-u'|,. (4.19)
=1=<
It can be shown that
[[u® -l s21ma>1<\[|o<i—ui . (4.20)
Therefore,
e —uCll, < [lu—u!||, +|[u®-u'l,
< [Ju—u'l|, +2 max |u;— o] (4.21)
1<isN
< (1+4Cy) [[u-u'||.
The result thus follows from Lemma 4.1. O

5. Example. In this section we give examples which are solved by the Galerkin
method just described above with equal mesh size h. We then compare the results
with the actual solutions.

EXAMPLE 5.1. We consider the boundary value problem

—%(xu’)'+e“:0, 0<x<1, u(0)=u()=0. (5.1)
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The exact solution is known: u(x) = 2In((1+ B)/(1+ Bx?)), B = =5+ 2+/6. It is seen
that [|u% — ulle = 0.188845 x 1072 for h = 0.1 and ||[u® — ulle = 0.189 x 10~# for
h = 0.01. According to the Corollary 3.2 the method is O(h?) which is reflected in
these results.

EXAMPLE 5.2. We consider the equation

~ L eewy + BX*T o Blat B-Dxl
X« 5(4+xP) 4+xbB (5.2)

(x*u’)(0*) =0, u(1) =0.

The exact solution is u =1n5 —In(4 + x#). The following results were obtained:

TABLE 5.1

« B h U’ —ullo

0.5 2 0.02 1.0299x10*
0.5 2 0.01 2.6147x107°
1.0 2 0.02 9.9647x107>
1.0 2 0.01 2.4913x107°
2.0 6 0.02 3.4133x10°*
2.0 6 0.01 8.6170x1075

REMARK 5.3. Our method does not differentiate between 0 < @x <1 and « > 1 as is
the case in many articles in the literature.
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