
IJMMS 29:6 (2002) 349–353
PII. S0161171202007561

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

ON THE ROOTS OF THE SUBSTITUTION
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We show that under the composition of multivalued functions, the set of the y-radical
roots of the Dickson substitution polynomial gd(x,a)−gd(y,a) is generated by one of the
roots. Hence, we show an expected generalization of the fact that, under the composition
of the functions, the y-radical roots of xd−yd are generated by ζdy .
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Let Fq denote the finite field of order q and characteristic p. For f(x) in Fq[x], let

f∗(x,y) denote the substitution polynomial f(x)−f(y). The polynomial f∗(x,y)
has frequently been used in questions on the set of values f(x), see for example

Wan [8], Dickson [4], Hayes [6], and Gomez-Calderon and Madden [5]. The linear and

quadratic factors of f∗(x,y) have been studied by Cohen [2, 3] and also by Acosta

and Gomez-Calderon [1]. A factor of f∗(x,y) is said to be a radical factor if it has

the form

c
(
x−R1(y)

)(
x−R2(y)

)···(x−Rm(y)), c ∈ Fq, (1)

where rj(y), 1≤ j ≤m, denotes a radical expression iny over the algebraic closure of

the field of functions Fq(y). If Ri(y) and Rj(y) are radical roots of f∗(x,y), then the

composite multivalued function Ri(Rj(y)) provides a set of radical roots of f∗(x,y);
that is, f(Ri(Rj(y)))= f(y) for all values of Ri(Rj(y)). For example, for q odd,

x3+x−y3−y = (x−R0(y)
)(
x−R1(y)

)(
x−R2(y)

)
, (2)

where R0(y)=y , 2R1(y)=−y+
√
−3y2−4, and 2R2(y)=−y−

√
−3y2−4. Thus,

R1
(
R1(y)

)=
[
y−

√
−3y2−4+

((
3y+

√
−3y2−4

)2
)1/2

]

4
= {R0(y),R2(y)

}
. (3)

Definition 1. Let Fq denote the finite field of order q and characteristic p. For

a∈ Fq and an integer d≥ 1 , let

gd(x,a)=
[|d/2|]∑
t=0

d
d−t

(
d−t
t

)
(−a)txd−2t (4)

denote the Dickson polynomial of degree d over Fq.
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Lemma 2. Let d be a positive integer and assume that Fq contains a primitive dth

root of unity ζ. Put

Ak = ζk+ζ−k, Bk = ζk−ζ−k. (5)

Then, for each a in Fq,

(i) if d is odd,

gd(x,a)−gd(y,a)=
(d−1)/2∏
i=1

(x−y)(x2−Akxy+y2+B2
ka
)
; (6)

(ii) if d is even,

gd(x,a)−gd(y,a)=
d/2∏
i=1

(
x2−y2)(x2−Akxy+y2+B2

ka
)
. (7)

Moreover for a �= 0, the quadratic factors are different from each other and irreducible

in Fq[x,y].

Proof. See [7, Theorem 3.12].

Theorem 3. If q is odd, 0 �= a∈ Fq, and (d,q)= 1, then

(i) gd(x,a)−gd(y,a) =
∏d
i=1(x−Ri(y)), where R1(y),R2(y), . . . ,Rd(y) denote

d-radical expressions in y over the algebraic closure of the field of functions

Fq(y);
(ii) under the composition of multivalued functions, the set of roots R1(y), R2(y),

. . . ,Rd(y) is generated by one of the roots Ri(y).

Proof. Let ζ be a dth primitive root over the field Fq. With notation as in Lemma 2,

write,

(a) if d is odd,

gd(x,a)−gd(y,a)= (x,y)
(d−1)/2∏
i=1

(
x2−Akxy+y2+B2

ka
)

= (x−σ0(y)
) (d−1)/2∏

i=1

(
x−σky+

)(
x−σky−

)
,

(8)

where σ0(y±) = y , 2σk(y+) = Aky + Bk
√
y2−4a, and 2σk(y−) = Aky −

Bk
√
y2−4a for 1≤ k≤ (d−1)/2;

(b) if d is even,

gd(x,a)−gd(y,a)=
(
x2−y2)d/2∏

i=1

(
x2−y2)(x2−Akxy+y2+B2

ka
)

= (x−σ0(y)
)(
x−σd/2(y)

)d/2∏
i=1

(
x−σk

(
y+
))(
x−σk

(
y−
))
,

(9)

where σ0(y)=y , σd/2(y)=−y , 2σk(y+)=Aky+Bk
√
y2−4a, and 2σk(y−)=

Aky−Bk
√
y2−4a for 1≤ k≤ d/2.
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Now we consider the composite multivalued function σ1(y+)◦σk(y+)
σ1
(
y+
)◦σk(y+)

= σ1



[
Aky+Bk

√
y2−4a

]
2




=

[
A1Aky+A1Bk

√
y2−4a+B1

((
Aky+Bk

√
y2−4a

)2−16a
)1/2

]
4

=

[
A1Aky+A1Bk

√
y2−4a+B1

(
A2
ky2+2yAkBk

√
y2−4a+B2

ky2−4aB2
k−16a

)1/2
]

4

=

[
A1Aky+A1Bk

√
y2−4a+B1

(
A2
ky2+2yAkBk

√
y2−4a+B2

ky2−4aA2
k

)1/2
]

4

=

[
A1Aky+A1Bk

√
y2−4a+B1

(
Bky+Ak

√
y2−a

)]
4

=
[
A1Aky+A1Bk

√
y2−4a±B1

(
Bky+Ak

√
y2−4a

)]
4

=


(
A1Ak+B1Bk

)
y+

(
A1Bk+AkB1

)√
y2−4a

4
,

(
A1Ak−B1Bk

)
y+

(
A1Bk−AkB1

)√
y2−4a

4


.

(10)

Thus,

σ1
(
y+
)◦σk(y+)=




σk+1
(
y+
)
, σk−1

(
y+
)
, if 1≤ k≤ d−3

2
, d is odd,

σ(d−1)/2
(
y−
)
, σ(d−3)/2

(
y+
)
, if k= d−1

2
, d is odd,

σk+1
(
y+
)
, σk−1

(
y+
)
, if 1≤ k≤ d

2
−1, d is even,

σd/2−1
(
y+
)
, σd/2−1

(
y−
)
, if k= d

2
, d is even.

(11)

Similarly, we get

σ1
(
y+
)◦σk(y+)=




σk+1
(
y−
)
, σk−1

(
y−
)
, if 1≤ k≤ (d−3)

2
, d is odd,

σ(d−1)/2
(
y+
)
, σ(d−3)/2

(
y−
)
, if k= d−1

2
, d is odd,

σk+1
(
y−
)
, σk−1

(
y−
)
, if 1≤ k≤ d

2
−1, d is even,

σd/2−1
(
y+
)
, σd/2−1

(
y−
)
, if k= d

2
, d is even.

(12)

Therefore, σ1(y+) generates the set of radical roots σi(y+), σi(y−), for all values i.
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The set of the y-radical roots of a substitution polynomial may require more than

one generator as we illustrate in the following theorem.

Theorem 4. For 0 ≠ b ∈ Fq and (mn,q) = 1, let fm,n(x,b) denote the polynomial

(xm+b)n. Then,

(i) fm,n(x,b)−fm,n(y,b)=
∏mn
i=1(x−Ri(y)), where R1(y),R2(y), . . . ,Rmn(y) de-

note radical expressions in y over algebraic closure of the field of functions Fq(y).
(ii) Under the composition of multivalued functions, the set of roots R1(y),R2(y),

. . . ,Rmny is generated by at least m of the roots Ri(y).

Proof. Let ζ and ξ be primitive roots of unity of order n andm, respectively, over

the field Fq. Then

fm,n(x,b)−fm,n(y,b)=
n∏
k=1

[(
xm+b)−ζk(ym+b)]

=
n∏
k=1

m∏
i=1

[
x−ξi(ζkym+b(1−ζ))1/m

]

=
n∏
k=1

m∏
i=1

(
x−σik(y)

)
.

(13)

Now we consider the composite multivalued function σj1(y)◦σik(y).

σji(y)◦σik(y)= ξj
((
ζ
(
ξi
(
ζkym+b(1−ζk))1/m)m+b(1−ζ)))1/m

= ξj((ζ(ζkym+b(1−ζk))+b(1−ζ)))1/m

= ξj(ζk+1ym+b(1−ζk+1))1/m

=


σjk+1(y), if 1≤ k≤n−2, 1≤ j ≤m,{
σ10(y),σ20(y), . . . ,σm0(y)

}
, if k=n−1, 1≤ j ≤m.

(14)

Therefore, σ11(y),σ21(y), . . . ,σm1(y) generate the set of roots {σjk(y) : 1 ≤ j ≤ m,
1≤ k≤n}.
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