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Let Y be a Banach space that has no finite cotype and p a real number satisfying 1 < p < c.
We prove that a set .l C IT, (X,Y) is uniformly dominated if and only if there exists a
constant C > 0 such that, for every finite set {(x;,T;) : i = 1,...,n} C X X, there is an
operator T €I, (X,Y) satisfying 1, (T) < C and || Tix;|l < || Tx;| fori=1,...,n.
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1. Introduction. Let X and Y be Banach spaces and p a real number satisfying 1 <
p < . A subset Mt of IT, (X,Y) is called uniformly dominated if there exists a positive
Radon measure u defined on the compact space (Bx+,0 (X*,X)|p,, ) such that

I Tx||” SJB [ (x*,x) [Pdu(x*) (1.1)
o
forall x € Xand all T € .. Since the appearance of Grothendieck-Pietsch’s domination
theorem for p-summing operators, there is a great interest in finding out the structure
of uniformly dominated sets. We will denote by %, (i) the set of all operators T €
I1,(X,Y) satisfying (1.1) for all x € X. It is easy to prove that %, (u) is absolutely
convex, closed, and bounded (for the p-summing norm).

In [4], the authors consider the case p = 1 and prove that J C IT,(X,Y) is uni-
formly dominated if and only if ey T* (By+) lies in the range of a vector measure
of bounded variation and valued in X*.

In [3], the following sufficient condition is proved: “let M CII,(X,Y) and 1 < p <
co. Suppose that there is a positive constant C > 0 such that, for every finite set
{x1,...,xn} of X, there exists Q € .l satisfying 1, (Q) < C and

DT < > llQxl)” (1.2)
i=1 i=1

for all T € Jl. Then ., is uniformly dominated.” They also prove that this condition is
necessary in the rather particular case that Jt C IT, (co,co) and M = D, (1) for some
positive Radon measure p on By, .

In this note, we obtain a necessary and sufficient condition for a set .l C I, (X,Y)
to be uniformly dominated, with the only restriction that Y is a Banach space without
finite cotype. We refer to [1] for our operator terminology. If X is a Banach space, By
will denote its closed unit ball; €4 (X) (£1, (X)) will be the Banach space of the strongly
(weakly) p-summable sequences.
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2. Main result. We need the following characterization of uniformly dominated
sets.

PROPOSITION 2.1. Let1l < p < co and M CI1,(X,Y). The following statements are
equivalent:

(a) JM is uniformly dominated.

(b) For every € > 0 and (x,,) € €}, (X), there exists ny € N such that

S || Tuxall? <€ 2.1)

n=ng
for all sequences (T,,) in .
(c) There exists a constant C > 0 such that
n n
SITixil|? <CP sup > [ (x*,x:) |7 (2.2)
i=1 X*EByx i=1

for all {x1,...,x,} Cc X and {T1,...,T,} C J.

PROOF. (a)=(b). In a similar way as in the Pietsch factorization theorem [1], we
can obtain, for all T € ., operators Ur : L, (1) — Lo (By+), [IUr|l < p(Bx+)!/?, and an
operator V : X — L« () such that the following diagram is commutative:

X—">1 sy
\4 #w(By*) (2.3)

L) — Ly ()

Here i, is the canonical injection from L (u) into L, (u) and iy is the isometry from
Y into ¥ (By+) defined by iy(y) = ((y*,¥))y*eBy«- Given € > 0 and (xy) € (X)),
we can choose ng € N so that

£
iy oV (xn)||f < ——o (2.4)
n;m” 14 n || IJ(BX*)
because i, oV is p-summing. Then, if (T},) is a sequence in .l, we have
Z I Txnll” = Z [liy o T (xn) ||
n=ng n=ng
= > lUn,eipeoV(xn)ll” (2.5)
nz=ng
< p(Bx+) z lipoV (x|l <.

n=ngo

(b)=(c). Using a standard argument, we can prove that .l is bounded for the operator
norm. Hence, given X = (x,) € 8, (X), there exists Mz > 0 such that

> | Tuxall? < Mg (2.6)
n=1



A NOTE ON UNIFORMLY DOMINATED SETS OF SUMMING OPERATORS 309
for all (T,) in Jt. Then, we can consider the linear maps
T (xn) €00 (X) — (Tnxn) € L5(Y) 2.7)

for each T = (Ty) in JM. They have closed graph; so, by the uniform boundedness
principle, there exists M > 0 so that

. Up
( Z HTnanp) < Mep (xn) (2.8)
n=1

for all (xy,) € £% (X) and all (T,) in JL (we wrote €, for the norm in £%, (X)).
(0)=(a).Given A= {T},..., Ty} CMand B={x,...,xn} C X,we define f4p:Bx+ — R by

i=1

Sap(x*) _Cp(i |<X*,Xi>|p)—i||TiXin (2.9)

for all x* € X*. We denote by & the set of all functions f g. It is clear that ? is convex
and disjoint from the cone N = {f € €(Bx«) : f(x*) <0, for all x* € By« }.In a similar
way as in the proof of Pietsch’s domination theorem [1], we can show that there is a
probability measure u on By satisfying

[, (i =2 17)d <0 (2.10)

forall T € Ml and all x € X. O

As an application of this result, we can show a relatively compact set for the p-
summing norm which is not uniformly dominated. Put T,, = (1/n)e; ® ey, n € N,
where (e,) and (e};) are the unit basis of ¢y and ¥, respectively. As 11 (Ty,) = 1/n,
(Ty) is a null sequence in IT; (co,co), so (Ty) is relatively compact. To see that it is
not uniformly dominated, we will use Proposition 2.1: the sequence (e,) is weakly
summable but, for all n € N, we have

1
> | Trer]| = D o 2.11)

k=n k=n
We are now ready to introduce our main result.

THEOREM 2.2. LetY be a Banach space that has no finite cotype, Ml C11,(X,Y), and
1 < p < . The following statements are equivalent:

(a) M is uniformly dominated.

(b) There is a constant C > 0 such that, for every {x1,...,xn} C X and{Ty,..., Ty} CM,
there exists an operator T € 11, (X,Y) satisfying 1, (T) < C and

| Tixi|| < ||Tx:

, i=1,...,n. (2.12)

PROOF. (a)=(b). By hypothesis, there exists a positive Radon measure y on Byx
such that

ITx|l < (JBX* | (x*,x) |pdu(X*)>l/p (2.13)
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for all T € M and all x € X. Since Y has no finite cotype, Y contains £%’s uniformly.
By [2], for every £ > 0 and n € N, there is an isomorphism J, from £% onto a subspace
of Y satisfying ||J;;!ll =1 and || J,|l <1+¢ for all n € N.

Given {x1,...,xn} C X and {Ty,..., T} C M, by (2.13) we have

1/p
|| Tixi|| < (J'B ) | {x*,x;) |pdu(x*)) , i=1,...,n. (2.14)

For every i =1,...,n, take g; € L4 (1) such that ||g;ll; =1 and

1/p
(J |(x*,xi)|pdu(x*)) =J (x*,xi)gi(x*)du(x*). (2.15)
By Byx
From (2.14) and (2.15), we obtain

||Tixi||sJB (x*,xi)gi(x*)du(x*), i=1,...,n. (2.16)

X ¥
Put v; = Jnei, being (e;)!"; the unit basis of £". We define an operator T: X — Y by
n
Tx =) (J (X*,xmi(x*)du(x*))yi. (2.17)
i=1 \7Bxx
We first prove that || Tx||? < (fgx* [{(x*,x)|Pdu(x*))(1+¢) for all x € X:

ITx|l = sup

Y*EByx*

(" ([, ot rute) ) )

< sup 3 ([ 1 o) [dnte) ) 0|

Y*EByx* i=1

1/q

< s S ([ eesaranee) ([ latentaneen)

y*EByx i=1

= (L;X* |(X*,X>|pdu(x*)>l/p sup i (", i) |

Y*EByx i=1

- (j [ (x*,x) I’”du(x*))l/pHinll

1/p
<(J |(x*,x)|pdu(x*)> (1+é¢).
By
(2.18)

Finally, we need to prove that ||Tix;|| < [|Tx;|| for i = 1,...,n. Put y* = ef o J;1,
(ef)I, being the unit basis of (£2)* ~ £}. Notice that [|y*|| <1 fori=1,...,n. We
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also denote by y;* a Hahn-Banach extension of e} o J,,! to Y. We have
ITxill = (i, Txi) |

IS —)

Jj=1

S 13, ermaeaut)) (7

- |3 (JB . <X*'xi>gf(X*)du(x*)><e:‘an1,Jnej> (2.19)

13 ([ e eduten et e

> || Tixill,

the last inequality is due to (2.16).
(b)=(a). It follows easily using Proposition 2.1(c). O

REMARKS. (1) It is interesting to give an example of a uniformly dominated set .it
for which there is no operator T € Jl satisfying || T;x;|| < [|Tx;ll, i =1,...,n, for some
finite set {(x;,T;):i=1,...,n} C X xM.Let X =¥; and Y = ¥ and consider the set
M={Tg:p €By,}, Tg: 41 — L being defined by Tp(x) = (xnfBn) forall & = (x,) € £1.
Obviously, .t is a uniformly dominated subset of IT; (£1,4).

By contradiction, suppose the following condition holds: “there is a constant C > 0
such that, for every finite set {(x;,T;) :i =1,...,n} C X X, there exists T € .l sat-
isfying || Tix;ll < ClITx;ll, i = 1,...,n.” Put x; = ¢; and T; = T, for i = 1,...,n, where
(ei)$2, is the unit basis of ¢; and B; = (1//1,,1//1,0,...). Take T, € .t such that

[|Tixi|| < Cl|Tyxi||, i=1,...,m; (2.20)
this yields
1 .
WsC|yi|, i=1,...,n. (2.21)
Then we have
o 2 < 01 &1
12> |yil“ 2> |yl 252? (2.22)
i=1 i=1 i=1

So, we have obtained the inequality Zf‘:l 1/i < C? for all n € N which allows us to
state that such an operator T cannot exist.

(2) Notice that, in the above example, .l is absolutely convex and weakly compact
in II; (41,4). Then, (Al is absolutely convex, closed, and uniformly dominated but
M # %D (u) for every admissible positive Radon measure p.
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(3) Finally, we give an example of a bounded set Jt of 2-summing operators that does
not have property (b) in Theorem 2.2. Consider the set .t of all 2-summing operators
T : co — Lo defined by Tg(x) = (xnBn) for all & = () € co, where B = (B,) runs
over the unit ball of £». We have Ty = io S, i being the identity map from ¥ into {.
and Sp : co — o defined by Sg(x) = (x»Bn). Since > has cotype 2, it follows that Sg
is 2-summing [1]. Nevertheless, .il does not satisfy property (b) in the above theorem.
By contradiction, suppose that there is a constant C > 0 such that (b) holds. Again, we
take Bi = (1//1,0,1/+/1,0,...) for all i € N. By hypothesis, there exists T € IT> (g, o)
such that ™ (T) < C and IITBieiH < ||Te;|| for i =1,...,n. Then we have

N

15

1< » )
== 2 ITgeill® < S lITeill” < €2 (2.23)
1 i=1

i=1

for all n € N. Hence, .t does not have property (b) in Theorem 2.2.
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