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Let Y be a Banach space that has no finite cotype and p a real number satisfying 1≤ p <∞.
We prove that a set � ⊂ Πp(X,Y) is uniformly dominated if and only if there exists a
constant C > 0 such that, for every finite set {(xi,Ti) : i = 1, . . . ,n} ⊂ X×�, there is an
operator T ∈Πp(X,Y) satisfying πp(T)≤ C and ‖Tixi‖ ≤ ‖Txi‖ for i= 1, . . . ,n.
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1. Introduction. Let X and Y be Banach spaces and p a real number satisfying 1≤
p <∞. A subset � of Πp(X,Y) is called uniformly dominated if there exists a positive

Radon measure µ defined on the compact space (BX∗ ,σ(X∗,X)|BX∗ ) such that

‖Tx‖p ≤
∫
BX∗

∣∣〈x∗,x〉∣∣pdµ(x∗) (1.1)

for allx ∈X and all T ∈�. Since the appearance of Grothendieck-Pietsch’s domination

theorem for p-summing operators, there is a great interest in finding out the structure

of uniformly dominated sets. We will denote by �p(µ) the set of all operators T ∈
Πp(X,Y) satisfying (1.1) for all x ∈ X. It is easy to prove that �p(µ) is absolutely

convex, closed, and bounded (for the p-summing norm).

In [4], the authors consider the case p = 1 and prove that � ⊂ Πp(X,Y) is uni-

formly dominated if and only if
⋃
T∈�T∗(BY∗) lies in the range of a vector measure

of bounded variation and valued in X∗.

In [3], the following sufficient condition is proved: “let � ⊂ Πp(X,Y) and 1 ≤ p <
∞. Suppose that there is a positive constant C > 0 such that, for every finite set

{x1, . . . ,xn} of X, there exists Q∈� satisfying πp(Q)≤ C and

n∑
i=1

∥∥Txi∥∥p ≤ n∑
i=1

∥∥Qxi∥∥p (1.2)

for all T ∈�. Then � is uniformly dominated.” They also prove that this condition is

necessary in the rather particular case that � ⊂ Πp(c0,c0) and � = �p(µ) for some

positive Radon measure µ on B�1 .

In this note, we obtain a necessary and sufficient condition for a set � ⊂ Πp(X,Y)
to be uniformly dominated, with the only restriction that Y is a Banach space without

finite cotype. We refer to [1] for our operator terminology. If X is a Banach space, BX
will denote its closed unit ball; �pa(X) (�

p
w(X)) will be the Banach space of the strongly

(weakly) p-summable sequences.
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2. Main result. We need the following characterization of uniformly dominated

sets.

Proposition 2.1. Let 1 ≤ p <∞ and � ⊂ Πp(X,Y). The following statements are

equivalent:

(a) � is uniformly dominated.

(b) For every ε > 0 and (xn)∈ �pw(X), there exists n0 ∈N such that∑
n≥n0

∥∥Tnxn∥∥p < ε (2.1)

for all sequences (Tn) in �.

(c) There exists a constant C > 0 such that

n∑
i=1

∥∥Tixi∥∥p ≤ Cp sup
x∗∈BX∗

n∑
i=1

∣∣〈x∗,xi〉∣∣p (2.2)

for all {x1, . . . ,xn} ⊂X and {T1, . . . ,Tn} ⊂�.

Proof. (a)⇒(b). In a similar way as in the Pietsch factorization theorem [1], we

can obtain, for all T ∈�, operators UT : Lp(µ)→ �∞(BY∗), ‖UT‖ ≤ µ(BX∗)1/p , and an

operator V :X → L∞(µ) such that the following diagram is commutative:

X

V

T
Y

iY

�∞
(
BY∗

)

L∞(µ)
ip

Lp(µ)
UT

(2.3)

Here ip is the canonical injection from L∞(µ) into Lp(µ) and iY is the isometry from

Y into �∞(BY∗) defined by iY (y) = (〈y∗,y〉)y∗∈BY∗ . Given ε > 0 and (xn) ∈ �pw(X),
we can choose n0 ∈N so that∑

n≥n0

∥∥ip ◦V(xn)∥∥p < ε
µ
(
BX∗

) (2.4)

because ip ◦V is p-summing. Then, if (Tn) is a sequence in �, we have∑
n≥n0

∥∥Tnxn∥∥p = ∑
n≥n0

∥∥iY ◦Tn(xn)∥∥p
=

∑
n≥n0

∥∥UTn ◦ip ◦V(xn)∥∥p
≤ µ(BX∗) ∑

n≥n0

∥∥ip ◦V(xn)∥∥p ≤ ε.
(2.5)

(b)⇒(c). Using a standard argument, we can prove that � is bounded for the operator

norm. Hence, given x̂ = (xn)∈ �pw(X), there exists Mx̂ > 0 such that

∞∑
n=1

∥∥Tnxn∥∥p ≤Mx̂ (2.6)
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for all (Tn) in �. Then, we can consider the linear maps

T̂ :
(
xn
)∈ �pw(X) 
 �→ (

Tnxn
)∈ �pa(Y) (2.7)

for each T̂ = (Tn) in �. They have closed graph; so, by the uniform boundedness

principle, there exists M > 0 so that ∞∑
n=1

∥∥Tnxn∥∥p
1/p

≤Mεp
(
xn
)

(2.8)

for all (xn)∈ �pw(X) and all (Tn) in � (we wrote εp for the norm in �pw(X)).
(c)⇒(a). GivenA={T1, . . . ,Tn}⊂� and B={x1, . . . ,xn}⊂X, we define fA,B : BX∗ →R by

fA,B
(
x∗
)= Cp

 n∑
i=1

∣∣〈x∗,xi〉∣∣p
− n∑

i=1

∥∥Tixi∥∥p (2.9)

for all x∗ ∈X∗. We denote by � the set of all functions fA,B . It is clear that � is convex

and disjoint from the cone �= {f ∈�(BX∗) : f(x∗) < 0, for all x∗ ∈ BX∗}. In a similar

way as in the proof of Pietsch’s domination theorem [1], we can show that there is a

probability measure µ on BX∗ satisfying∫
BX∗

(
‖Tx‖p−Cp∣∣〈x∗,x〉∣∣p)dµ ≤ 0 (2.10)

for all T ∈� and all x ∈X.

As an application of this result, we can show a relatively compact set for the p-

summing norm which is not uniformly dominated. Put Tn = (1/n)e∗n ⊗ en, n ∈ N,

where (en) and (e∗n) are the unit basis of c0 and �1, respectively. As π1(Tn) = 1/n,

(Tn) is a null sequence in Π1(c0,c0), so (Tn) is relatively compact. To see that it is

not uniformly dominated, we will use Proposition 2.1: the sequence (en) is weakly

summable but, for all n∈N, we have∑
k≥n

∥∥Tkek∥∥∞ = ∑
k≥n

1
k
. (2.11)

We are now ready to introduce our main result.

Theorem 2.2. Let Y be a Banach space that has no finite cotype, � ⊂Πp(X,Y), and

1≤ p <∞. The following statements are equivalent:

(a) � is uniformly dominated.

(b) There is a constantC > 0 such that, for every {x1, . . . ,xn} ⊂X and {T1, . . . ,Tn}⊂�,

there exists an operator T ∈Πp(X,Y) satisfying πp(T)≤ C and∥∥Tixi∥∥≤ ∥∥Txi∥∥, i= 1, . . . ,n. (2.12)

Proof. (a)⇒(b). By hypothesis, there exists a positive Radon measure µ on BX∗
such that

‖Tx‖ ≤
(∫

BX∗

∣∣〈x∗,x〉∣∣pdµ(x∗))1/p

(2.13)
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for all T ∈� and all x ∈ X. Since Y has no finite cotype, Y contains �n∞’s uniformly.

By [2], for every ε > 0 and n∈N, there is an isomorphism Jn from �n∞ onto a subspace

of Y satisfying ‖J−1
n ‖ = 1 and ‖Jn‖ ≤ 1+ε for all n∈N.

Given {x1, . . . ,xn} ⊂X and {T1, . . . ,Tn} ⊂�, by (2.13) we have

∥∥Tixi∥∥≤
(∫

BX∗

∣∣〈x∗,xi〉∣∣pdµ(x∗)
)1/p

, i= 1, . . . ,n. (2.14)

For every i= 1, . . . ,n, take gi ∈ Lq(µ) such that ‖gi‖q = 1 and

(∫
BX∗

∣∣〈x∗,xi〉∣∣pdµ(x∗)
)1/p

=
∫
BX∗

〈
x∗,xi

〉
gi
(
x∗
)
dµ
(
x∗
)
. (2.15)

From (2.14) and (2.15), we obtain

∥∥Tixi∥∥≤ ∫
BX∗

〈
x∗,xi

〉
gi
(
x∗
)
dµ
(
x∗
)
, i= 1, . . . ,n. (2.16)

Put yi = Jnei, being (ei)ni=1 the unit basis of �n∞. We define an operator T :X → Y by

Tx =
n∑
i=1

(∫
BX∗

〈
x∗,x

〉
gi
(
x∗
)
dµ
(
x∗
))
yi. (2.17)

We first prove that ‖Tx‖p ≤ (∫BX∗ |〈x∗,x〉|pdµ(x∗))(1+ε) for all x ∈X:

‖Tx‖ = sup
y∗∈BY∗

∣∣∣∣∣
〈
y∗,

n∑
i=1

(∫
BX∗

〈
x∗,x

〉
gi
(
x∗
)
dµ
(
x∗
))
yi

〉∣∣∣∣∣
≤ sup
y∗∈BY∗

n∑
i=1

(∫
BX∗

∣∣〈x∗,x〉∣∣∣∣gi(x∗)∣∣dµ(x∗)
)∣∣〈y∗,yi〉∣∣

≤ sup
y∗∈BY∗

n∑
i=1

(∫
BX∗

∣∣〈x∗,x〉∣∣pdµ(x∗))1/p(∫
BX∗

∣∣gi(x∗)∣∣qdµ(x∗)
)1/q∣∣〈y∗,yi〉∣∣

≤
(∫

BX∗

∣∣〈x∗,x〉∣∣pdµ(x∗))1/p

sup
y∗∈BY∗

n∑
i=1

∣∣〈y∗,yi〉∣∣

≤
(∫

BX∗

∣∣〈x∗,x〉∣∣pdµ(x∗))1/p∥∥J∗n∥∥
≤
(∫

BX∗

∣∣〈x∗,x〉∣∣pdµ(x∗))1/p

(1+ε).
(2.18)

Finally, we need to prove that ‖Tixi‖ ≤ ‖Txi‖ for i = 1, . . . ,n. Put y∗i = e∗i ◦ J−1
n ,

(e∗i )
n
i=1 being the unit basis of (�n∞)∗ � �n1 . Notice that ‖y∗i ‖ ≤ 1 for i = 1, . . . ,n. We
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also denote by y∗i a Hahn-Banach extension of e∗i ◦J−1
n to Y . We have∥∥Txi∥∥≥ ∣∣〈y∗i ,Txi〉∣∣

=
∣∣∣∣∣∣
〈
y∗i ,

n∑
j=1

(∫
BX∗

〈
x∗,xi

〉
gj
(
x∗
)
dµ
(
x∗
))
yj

〉∣∣∣∣∣∣
=
∣∣∣∣∣∣
n∑
j=1

(∫
BX∗

〈
x∗,xi

〉
gj
(
x∗
)
dµ
(
x∗
))〈

y∗i ,yj
〉∣∣∣∣∣∣

=
∣∣∣∣∣∣
n∑
j=1

(∫
BX∗

〈
x∗,xi

〉
gj
(
x∗
)
dµ
(
x∗
))〈

e∗i ◦J−1
n ,Jnej

〉∣∣∣∣∣∣
=
∣∣∣∣∣∣
n∑
j=1

(∫
BX∗

〈
x∗,xi

〉
gj
(
x∗
)
dµ
(
x∗
))〈

e∗i ,ej
〉∣∣∣∣∣∣

=
∫
BX∗

〈
x∗,xi

〉
gi
(
x∗
)
dµ
(
x∗
)

≥ ∥∥Tixi∥∥,

(2.19)

the last inequality is due to (2.16).

(b)⇒(a). It follows easily using Proposition 2.1(c).

Remarks. (1) It is interesting to give an example of a uniformly dominated set �

for which there is no operator T ∈� satisfying ‖Tixi‖ ≤ ‖Txi‖, i= 1, . . . ,n, for some

finite set {(xi,Ti) : i = 1, . . . ,n} ⊂ X×�. Let X = �1 and Y = �∞ and consider the set

� = {Tβ : β∈ B�2}, Tβ : �1 → �∞ being defined by Tβ(α)= (αnβn) for allα= (αn)∈ �1.

Obviously, � is a uniformly dominated subset of Π1(�1,�∞).
By contradiction, suppose the following condition holds: “there is a constant C > 0

such that, for every finite set {(xi,Ti) : i = 1, . . . ,n} ⊂ X×�, there exists T ∈ � sat-

isfying ‖Tixi‖ ≤ C‖Txi‖, i = 1, . . . ,n.” Put xi = ei and Ti = Tβi for i = 1, . . . ,n, where

(ei)∞i=1 is the unit basis of �1 and βi = (1/
√
i, (i). . .,1/

√
i,0, . . .). Take Tγ ∈� such that∥∥Tixi∥∥≤ C∥∥Tγxi∥∥, i= 1, . . . ,n; (2.20)

this yields

1√
i
≤ C∣∣γi∣∣, i= 1, . . . ,n. (2.21)

Then we have

1≥
∞∑
i=1

∣∣γi∣∣2 ≥
n∑
i=1

∣∣γi∣∣2 ≥ 1
C2

n∑
i=1

1
i
. (2.22)

So, we have obtained the inequality
∑n
i=1 1/i ≤ C2 for all n ∈ N which allows us to

state that such an operator T cannot exist.

(2) Notice that, in the above example, � is absolutely convex and weakly compact

in Π1(�1,�∞). Then, � is absolutely convex, closed, and uniformly dominated but

� ≠�1(µ) for every admissible positive Radon measure µ.
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(3) Finally, we give an example of a bounded set � of 2-summing operators that does

not have property (b) in Theorem 2.2. Consider the set � of all 2-summing operators

Tβ : c0 → �∞ defined by Tβ(α) = (αnβn) for all α = (αn) ∈ c0, where β = (βn) runs

over the unit ball of �2. We have Tβ = i◦Sβ, i being the identity map from �2 into �∞
and Sβ : c0 → �2 defined by Sβ(α) = (αnβn). Since �2 has cotype 2, it follows that Sβ
is 2-summing [1]. Nevertheless, � does not satisfy property (b) in the above theorem.

By contradiction, suppose that there is a constant C > 0 such that (b) holds. Again, we

take β̃i = (1/
√
i, (i). . .,1/

√
i,0, . . .) for all i∈N. By hypothesis, there exists T ∈Π2(c0,�∞)

such that π2(T)≤ C and ‖Tβ̃iei‖ ≤ ‖Tei‖ for i= 1, . . . ,n. Then we have

n∑
i=1

1
i
=

n∑
i=1

∥∥Tβ̃iei∥∥2 ≤
n∑
i=1

∥∥Tei∥∥2 ≤ C2 (2.23)

for all n∈N. Hence, � does not have property (b) in Theorem 2.2.
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