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1. Introduction. It is well known that a large number of papers is devoted to the
study of weak continuity and strong continuity definitions between topological spaces.
Much of these were given using open, semiopen, preopen concepts, and so forth in
topological spaces. Their theories run, either in part or in whole, parallel to their theory
of continuous functions. Some authors like Kohli [8] and Kandil [7] tried to unify their
definitions and properties.

Throughout the present paper, (X,T) means topological space on which no sepa-
ration axioms are assumed unless otherwise explicitly stated.

Let A be a subset of X, the closure, semiclosure, and interior of A will be denoted
by clA, sclA, and intA, respectively. The subset A is called semiopen [10] (resp.,
preopen [12], x-open [15], and B-open [2]) if A C cl(intA) (resp., A C int(clA), A C
scl(intA), and A C cl(int(clA))).

DEFINITION 1.1 [7]. Let (X, T) be a topological space. A mapping @ : P(X) — P(X)
is called an operation on P(X), where P(X) denotes the family of all the subsets of X,
if and only if for each A € P(X) — {¢}, intA C A? and ¢ = ¢, where A? denotes the
value of @ in A. The class of all operations on P(X) is denoted by Ox 1)-

DEFINITION 1.2 [7]. Let (X, T) be a topological space. A partial order “<” on Ox 1)
is defined in the following way: @1 < @2 & AP € A®2 for each A € X, where @,p» €
O(X,T) .

DEFINITION 1.3 [7]. An operation ¢ € Ox, ) is called monotonous if and only if
A< B= A? c B?, for each A,B c X.

Throughout, all the operations on P(X) are assumed to be monotonous.

DEFINITION 1.4. Let (X, 1) be a topological space, G,H € P(X), and ¢ € O(x,r). Then
(i) G is called p-open if and only if G < G?,
(ii) H is called @-closed if and only if X — H is g-open.

o If X¥ = X then each set of the form G? is -open.
o If each G € P(X), G < G, then all the subsets of X are g-open.
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o If each G € P(X), G < G?, then G is @-open if and only if G = G?.

o If we take @ = int, then @-open sets are open sets.

¢ Any union of @-open sets is @-open [5].

The class of all g-open (@-closed) subsets of X is denoted by O (X) (Cy (X)). For
each x € X, the class of g-open neighborhoods of x is denoted by Ny, (X, x), that is,
Nep(X,x)={VcX:xeVe0yp(X)}

The definitions of @; »-closure and @ »-interior of any subset A of X were given
by El-Monsef et al. [1]. Similarly, the definition @ »-frontier of A can be given in the
following way.

DEFINITION 1.5. Let (X, T) be a topological space, x € X, A € P(X), and @1, €
O(X,-,—). Then
(i) the @i -closure of A, denoted by @ 2-clA, is defined by x € @;2-clA < An
U®2 = @, for all U € Ny, (X, x) (see [7]);
(i) the @ .-interior of A, denoted by @, »-intA, is defined by x € @ .-intA <
U?®2 c A, for some U € Ny, (X,x) (see [7]);
(iii) the @;.-frontier of A, denoted by @;2-04, is defined by x € @;12-0A & An
UP2 =@ and (X-A)nUP2 + &, for all U € Ny, (X,x).

DEFINITION 1.6. Let (X, T) be a topological space, A € P(X) and @1,@2 € Ox,1)-
Then
(i) Ais @i-openif and only if A C @4 -intA.
(i) Ais @i -closed if and only if @;-clA C A.
The class of all @;.-open (@;2-closed) subsets of X is denoted by Op,,(X)
(Cypy, (X)). For each x € X, the class of @, 2-open neighborhoods of x is denoted by
Ng,, (X,x), thatis, Ny, , (X, x) ={Vc X:x €V € Op,, (X)} (see [7]).

PROPOSITION 1.7. Let (X, T) be a topological space and A < X. Then the following
Statements are true:

(1) @1,2-0A = @ 2-clAN@q2-cl(X\A).

(2) 1,20A = @12-clA— (@12-intA).

(3) 1,2-clA = @12-0AU @ 2-intA.

PROOF. The proof is immediate by definition of @ »-frontier. O

2. Unified framework. The definition of @,y >-continuity of any function f de-
fined from a topological space (X, T) to a topological space (Y, &) can be given in the
following way.

DEFINITION 2.1. Let (X,T), (Y,9) be topological spaces. A function f: (X,T) —
(Y,9) is said to be @2y »-continuous at a point x € X if for each V € Oy, (Y) with
f(x) €V, there exists U € Oy, (X,x) such that f(U?2) c V¥2 or U?2 FLve) If
f has this property at each point x € X, then f is @2 2-continuous on X.

The above definition plays a very important unification role in topology, because
@121 2-continuity reduces to a lot of existing continuity notions for some particular
choices of the operations involved. Of course, there are a lot of other possible cases
that can still be considered. We have the following table.
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TABLE 2.1
Operation Operation Operation Operation Continuity type
P1 @2 Y1 Y2 @1,2¢/1,2-continuous
int 1 int I continuous
int cl int cl 0-continuous [6]
int intocl int intocl d-continuous [16]
int 1 int cl weakly-continuous [9]
int cl int 1 strongly 0-continuous [16]
int 1 int intocl almost continuous [19]
int cl int intocl almost strongly continuous [18]
int intecl int I super continuous [14]
int intocl int cl weakly 0-continuous
cloint 1 int I semi-continuous [10]
cloint 1 cloint I irresolute [4]
cloint scl cloint scl semi-irresolute
cloint scl cloint I strongly irresolute
intocloint 1 int 1 «-continuous [13]
intecl 1 int I pre-continuous [12]
clointocl 1 int I B-continuous [1]
cleoint 1 int cl weakly semi-continuous
intocl 1 int I weakly pre-continuous
cloint scl int cl 6-semi-continuous [3]
cloint 1 int intocl almost semi-continuous
cleoint cl int I semi-strongly 0-continuous
intocloint 1 int cl weakly x-continuous
int 1 intocl cl 0-strongly continuous
cleoint 1 cleint scl quasi-irresolute
intocloint 1 intocloint I «-irresolute [11]
cleoint 1 int scl semi-weakly continuous [17]

The following theorem characterizes @1 1 2-continuous functions in terms of the
@121 2-interior, @121 2-closure, and @i 21 2-frontier of sets.

THEOREM 2.2. Let (X,T), (Y,9) be topological spaces, and let @1,p2 € O, 1),
W1,P2 € Oy,9), I < Y». Then the following statements are equivalent for a function
f:(X,t)—-(Y,9):

(1) f @121 ,2-continuous;

(2) f7UV) € @i p-int(f~1(V¥2)) for eachV € Oy, (Y);

(3) for each x € X and V € Ny, (Y, f(x)) there exists U € Ny, (X,x) such that

U2 gf*l(VWZ);

(4) f71(V¥2) € Ny, ,(X,x) for each x € X and V € Ny, (Y, f(x));

(5) f(@i2-clA) € @r2-cl(f(A)) for every Ac X;

(6) @12-cl(f1(B)) € f1(y1,2-cl(B)) for everyB<Y;

(7) f~H(y12-Int(B)) € @1 2-int(f~1(B)) for every B Y;
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(8) @12-0(f1(B)) = f 1 (p12-0(B)) forevery B Y;
9) f(@12-0(A)) € P12-0(f(A)) forevery Ac X;
(10) f(@12-0(A)) S Pr12-cl(f(A)) for every A c X.

PROOE. (1)=(2).LetV € Oy, (Y) and x € f~1(V). Then f(x) € V and, by (1), there
exists U € Oy, (X,x) such that f(U%2) < V¥2 and hence U%2 c f~1(V¥2), Therefore,
X € @y p-int(f1(V¥2)).

(2)=(3). Let x € X and V € Ny, (Y, f(x)). Then, there exists T € Oy, (Y, f(x)) such
that T¥2 < VY2, By (2), we have f~1(T) € @1 2-int(f~1(T¥2)). Because x € f~1(T), we
have x € @1 -int(f~1(T%2)). By definition of ¢ »-interior, there exists U € Oy, (X,x)
such that U%2 ¢ f~1(T%2) c f~1(V¥2) and hence U®2 c f~1(V¥2),

(3)=>(4). Let x € X and V € Ny, (Y, f(x)). By (3), there exists U € N, (X,x) such
that U®2 c f~1(V¥2). So, we have f~1(V¥2) € Ny, , (X, x).

(4)=(5). Suppose that A < X and f(x) ¢ @i2-cl(f(A)). Then, there exists V
Ny, (Y, f(x)) such that f(A) nV¥2 = @. So, we have [~ 1(f(A)nf1(V¥) =0
and hence An f~1(V¥2) = @. Since, by (4), f~1(V¥2) € Ny, ,, (X,x), then there ex-
ists U € Og, (X,x) such that U®2 < f~1(V¥2). So, we have AnU?%? = @ and hence
X & @12-cl(A). Therefore f(x) ¢ f (@1 2-cl(A)).

(5)=(6). Let B < Y.Because f(f~'(B)) < B,we have @ 2-cl(f(f~1(B))) € y12-cl(B).
By (5), f(@12-cl(f1(B))) € r2-cl(f(f1(B))) € w1.2-cl(B). By applying f~! to all
sides of inclusion, we get @1 2-cl(f~1(B)) < f~' (@1 2-cl(B)).

(6)=>(7). Let B < Y and x € f~'(g12-int(B)). Then, x ¢ X\f ' (y;2-int(B)) =
SH Y\ 2-int(B)) = f~1(y12-cl(Y\B)), and hence x ¢ f~!(y2-cl(Y\B)). By (6),
@12-cl(f~1(Y\B)) < f~H@i2-cl(Y\B)). Then x ¢ @12-cl(f~1(Y\B)) = @12-cl(X\
f71(B)) = X\@12-int(f~1(B)), and hence x € @1 »-int(f~1(B)).

(7)=(1). Let x € X, and V € Ny, (Y, f(x)). Since V < V%2, we have f(x) €
W12-int(V¥2), and hence x € f~H(yi-int(V¥2)). By (7), x € @1-int(f~1(B)). By
the definition of @ .-int, there exists U € Oy, (X,x) such that U2 F1(v¥z), So,
we have f(U%2) c V2,

(6)=(8). Let B < Y. We have

@1,2-0(f 1 (B)) = @1o-cl(f1(B)) nprp-cl (X\f1(B))
= @i2-cl(f(B)) n@i-cl(f (Y \B))
< T (wr2-c(B)) n f 7 (1 2-cl(Y\B))
= f N (@12-0(B)).

(2.1)

(8)=(9). Let A < X, then A < f~1(f(A)), we get ©12-0(A) € P12-0(f1(f(A))) <
S H12-0(f(A))), and hence @1 -0(A) = f~1(12-0(f (A))). This gives f (1 2-0(A))
S P1,2-0(f(A)).

(9)=(5). Let Ac X and y € f(@12-cl(A)). There exists x € @;2-cl(A) such that
f(x) =y.Since x € @ 2-cl(A) = 12-0(A) U@ -int(A), then x € p;2-0(A) or x €
@1.2-int(A). So, we have y = f(x) € f(p1.2-0(A)) or y = f(x) € f(P12-int(A)).

On the other hand, f(@i2-cl(A)) = f(@12-0(A) U @12-int(A)) € P12-0(f(A)) U
S(A) € P12-cd(f(A) U g12-cl(f(A)) = gi12-cl(f(A)). Therefore, f(@12-cl(A)) <
W12-cl(f(A)).
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(5)=(10). Let A= X. By @1,2-0(A) S @1,2-cl(A), we have f(@12-0(A)) € f(@1,.2-cl(A))
< ¢12-cl(f(A)), and hence f(@1,2-0(A)) < 1 2-cl(f(A)).

(10)=(5). Let A< X. By @ 2-cl(A) = @12-0(A) U @1 2-int(A), we get f(@p12-cl(A))
=f(P1,2-0(A) U@ 2-int(A)) = f(P12-0(A)) U f(@12-int(A)) S @1 2-cl(f(A) U f(@r,2-
int(A)) = @12-cl(f(A)).

Therefore, f(@i1,2-cl(A)) € @12-cl(f(A)). O

COROLLARY 2.3. If f: (X,T) — (Y, 9) is @12¢1,2-continuous, then f : (X,04, , (X))
- (Y,0y,,(Y)) is continuous.

PROOF. let x € X and V € Owl,Z(Y,f(x)). Then x € f~1(V), and there exists a
W e Oy, (Y, f(x)) such that W¥2 = V. Since f is @1,2(1,2-continuous at x, for W e
Oy, (Y, f(x)) there exists a U € Oy, (X,x) such that U®2 c f~1(W¥2) c f~1(V). If
X € @1p-int(f~1(V)), then f~1(V) € Og,, (X, x).

The reverse implication of the corollary is not true. O

EXAMPLE 2.4. Let (X,7), (Y,9) be topological spaces defined by X = {a,b,c},
T ={¢,X,{a},{c},{a,c}}, Y ={a,b,c}, § = {¢p,X,{b}}, and @1 @2 € Ox,r) defined
by @1 = T-int, and for any A € P(X), we have

AP2 = {a,b}, A={al; 2.2)
A, otherwise,

W1,¥2 € Oy,9) defined by ¢, = 9-int, and for any B € P(Y), we have

v {{b,c}, B={b}; 0

B, otherwise.

Then Oy, , (X) =1{¢,X,{c}} and Osz(Y) = {¢,Y}. Let I be identity function. Be-
cause I"'({b}¥2) = {b,c} ¢ Ny, , (X,b), I isnot @1 2y 2-continuous but I : (X, 04, , (X))
- (Y,0y,,(Y)) is continuous.

To give a sufficient condition that the converse implication of Corollary 2.3 is true,
we need to give the definition of ¢, -T> space.

DEFINITION 2.5. Let (X, T) be atopological space and @1, @2 € O(x,1), then (X, T) is
() @12-T) space if and only if {x} is @, -closed for each x € X,
(i) @1,.2-T> spaceif and only if any distinct points x, y of X have @;-neighborhoods
U€ Ny, (X,x),VENyp (X,y),and UP2NVP2 = & (see [7]).

THEOREM 2.6. Let (X,T), (Y,9) be topological spaces, (Y,9) is @12-T» space, and
I <. Then f:(X,T) = (Y,9) is @112 -continuous if and only if f : (X, 0, , (X)) —
(Y,0y,,(Y)) is continuous.

PROOF. (=). Proved.

(«). Let f: (X,0¢,,(X)) = (Y,0y,,(Y)) be continuous, x € X, and V € Ny, (Y,
f(x)).Since (Y, 8) is @1 2-T> space, we have V € Oy, , (Y, f(x)). By hypothesis, 1w
€ Og,,(X). Since x € f~1(V), there exists U € Ny, (X,x) such that U2 < f~1(V)
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and hence U?2 ¢ f~1(V) c f~1(V¥2), and we have f(UP2) € V¥2. So f is Q121 2-
continuous. O

THEOREM 2.7. Let (X,T), (Y,9) be topological spaces, I = Y. Then the following
statements are equivalent:

1) f: (X, 1) = (Y,9) is @121 2-continuous;

(2) f7HV) € Og,, (X) forevery V € Oy, (Y);

(3) f7HUK) € Cp,,(X) for every K € Cy, (Y).

PROOE. (1)=(2). Let f be @11 2-continuous, V € Oy, (Y), and x € f~1(V). Since
f(x) eV and f is @1,y ,2-continuous, there exists U € Ny, (X, x) such that U2 €
fHVY2) = f71(V). So, we have x € @i -int(f~'(V)). Therefore, f~1(V) < @1.-
int(f~1(V)), and hence f~1(V) € Oy, , (X).

(2)=(1). Let x € X and V € Oy, (Y, f(x)). By (2), fFuv) e Og,,(X,x), and there
exists U € Ny, (X,x) such that U%2 c f~1(V) = f~1(V¥2).

(2)=(3). Let K € Cy, (Y), then Y\K € Oy, (Y). By hypothesis, we have f~}(Y\K) =
X\f1(K) € Og,, (X). This implies f~!(K) € Cy, , (X).

(3)=(2). It can be easily seen. O

DEFINITION 2.8. Let (X, T) be a topological space. An operation @ € O x ) is said
to be regular with respect to the family Q < P(X), if for each x € X and U,V € Q
containing x there exists W € Q containing x such that W% c U NV (see [7]).

An operator @ € Ox ) is said to be @, >-regular if and only if Q = O, (X), where
®1 € Ox,7)-

THEOREM 2.9. Let (X,7), (Y,9) be topological spaces. Let ¢1,p2 € O+ and
®2 € Oxr) be a @i -regular operator. Then for any function f : (X,T) - (Y,9),
[ is @121 2-continuous if and only if for each x € X, W € Ny, (X,x), and V €
Ny, (Y, f(x)), there exists U € Ny, (X, x) such that UP2 c W2 f~1(V¥2),

PROOF. (<«).Letx € f~1(y12-int(B)), for any B< Y. Thenwe have f(x) € 1 2-int(B).
By definition of y »-interior, there exists G € Oy, (Y, f(x)) such that f(x) e G¥2 =B
and hence x € f~1(G¥2). So, we have x € W2 n f~1(V¥2), for all W € Ny, (X, x).
By hypothesis, there exists U € Ny, (X,x) such that x € U%2 ¢ WP2 n f~1(V¥2) ¢
fH(VvY¥2) ¢ f71(B), and hence x € @ -int(f~1(B)). Therefore, f~!(y-int(B)) <
@12-int(f~1(B)).

(=). Let V. € Ny, (Y, f(x)). There exists T € Oy, (Y, f(x)) such that f(x) € T¥2 ¢
V € V¥2 and hence f(x) € @io-int(V¥2). Therefore, x € f~1(y1-int(V¥2)). By
@121 2-continuity of f, x € @1 -int(f~1 (V¥2)). By definition of @1 »-interior, there
exists U € Oy, (X, x) suchthatx e UP2 < S~H(V¥2).Since @7 is @ 2-regular operator,
there exists U* € Oy, (X,x) such that x € U*®2 c U2 f~H(V¥2) c WP2 0 f-L1(V¥2),

O

The following theorem characterizes the set of @iy 2-noncontinuous points
denoted by @ 2¢1,2-NC(f) of any function f.

THEOREM 2.10. Let (X,T), (Y,9) be topological spaces, and let f : (X,T) — (Y, %)
be any function, 1, € Ox,r), Y1,W2 € Ov,9), and I = Y. Then @12y12-NC(f) =
U{f PV n@12-0(f71(V)) |V €Oy, (Y)}.
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PROOF. Let x € @1212-NC(f). Then f is not continuous at x. So there exits
W e Oy, (Y, f(x)) such that f(U®2) ¢ W?2 for each U € Oy, (X,x). Hence for each
U € Oy, (X,x),we have @ = f(UP2)n(Y -W) = f(UP2nf~H(Y-W)) = f(UP2N(X -
f~H(W))). Therefore, we get UP2N(X — f~1(W)) # @ and hence x € @1 2-cl(X\ f~H(W)).
On the other hand, x € @12-cl(X\f'(W)) nf~L (W) = f~H W) n@12-0(f 1 (W)) c
U{f N V) N @12-0(f7H(V)) | V € Oy, (Y)}. Finally, we get x € U{f5(V) N @12-
O(f7H(V)) | V € Oy, (Y)}. This shows that @i.¢12-NC(f) = U{f~1(V) n @1.-
A(fHV)) IV ey, (V)]

To show the reverse inclusion, let x € U{f 1 (V) n@12-0(f 1 (V)) | V € Oy, (Y)}.
There exists V € Oy, (Y) such that x € f~1(V) n@12-0(f~1(V)) = f-LV)\(P1,2-
int(f~1(V))), and hence x ¢ @ -int(f~1(V)). Suppose f is @12 -continuous at
x. Since x € f~1(V) and V € Oy, (Y), there exists U € Oy, (X,x) such that U%2 ¢
fH(VY¥2) = f~1(V), and hence x € @ -int(f~'(V)). This is a contradiction. O

THEOREM 2.11. Let (X,7),(Y,9) be topological spaces and let 1,2, P3,P4 €

O, W1,¥2,W3 Y4 € Ov,9) be operators with the property Q3 = @1, Q2 = @4, Y1 =
W3, and Y4 > Yo. Then for any function f: (X,T) — (Y, 9), f is @12y 2-continuous if
and only if f is Q3 43 4-continuous.

PROOF. Letx € X and V € Oy, (Y, f(x)). Since V € V¥3 c VY1 and hence V < V¥,
we have V € Oy, (Y, f(x)), by @1,y 2-continuity of f, there exists U € Oy, (X,x)
such that U%2 ¢ f~1(V¥2) c f~1(V¥4). By UP4 c U®2 and V¥2 < V¥4, we have U%4 ¢
UP2 c f-1(v¥2) c f~1(V¥4), and hence U%* c f~1(V¥4). Therefore, f is @34@s3.4-
continuous. O

THEOREM 2.12. Let (X, T) be a topological space, and let @1, @2, 3, @4 € Ox 1) be
operators with the property @1 > @3, Q2 > Q4. Then the identity functionI: (X,T) —
(Y,9) is 1,2, @3 4-continuous.

PROOF. Let x € X and V € Oy, (Y,I(x)). Since V¥3 < V%1, then we have V €
Oy, (Y,I(x)). So we get I(V¥2) = V%2 c V%4 and hence I(V¥2) c V¥4, Therefore, I
is @12, 3 4-continuous. O

The last two theorems give the following diagrams:
o-continuity = 0-continuity,

strongly 0-continuity ———=> super continuity ———=> continuity

I I I

almost strongly 6-continuity =———=> §-continuity =———=> almost continuity

I I I

0-continuity =————=> weakly 0-continuity = weakly continuity,

semicontinuity ———> f-continuity

l |

continuity =———= «-continuity ———=> pre-continuity

I I l

almost continuity =—=> 0-continuity —=> weakly continuity,
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strongly irresolute === irresolute === semi-irresolute

J

continuity ———=> semicontinuity,

continuity =———= almost cont. ———=> 0-cont. ———=> weakly 0-cont.

| / !

semicontinuity => almost semicont. =—> @-semicont. =—> weakly semicont.
(2.4)

3. Some properties of @, >y »-continuous functions

THEOREM 3.1. Let f: (X,T) — (Y,9) be a one-to-one and @i, »-continuous
function and let (Y,9) be a @12-T>(12-T1) topological space. Then (X,T) is a
@1,.2-To(@1,2-Th) topological space.

PROOF. We prove (X,T) is a @1,2-T>. The other case can be proved similarly. Let
x,y € X and x # y.Since f is a one-to-one function, we have f(x) = f (). Since (Y, 9)
is a @1-T>, then there exist Vi € Ny, (Y, f(x)), V2 € Ny, (Y, f(»)), and V> n VY% =
. Since f is @121 2-continuous, then there exist U; € Ny, (X,x), Uz € Ny, (X,y)
such that f(U}?) = V}*? and f(US?) = V4? and f(U}?)n f(US?) = @. Hence we have
UY? nUS? = @. Therefore (X, T) is a @1,2-To. O

THEOREM 3.2. The topological space (X,T) is a 12-T; (i = 1,2) if and only if for
any x,y € X and x # y there exists a (Y, 93) topological space with @1 -T», a function
f from (X, 7) to (Y,9) such that @ 2-continuous, and f(x) + f ().

PROOF. We prove the theorem for i = 2. The other case can be proved similarly.

(=). Suppose (X, T) is a @1 2-T>, it is easy to check that the identity function defined
from (X, T) to (X, T) is the desired function f.

(«). Let x,y € X and x # . By hypothesis, there exists a (Y, ) topological space
with @,,2-T», an f function from (X, 7) to (Y,9) such that @, 2y 2-continuous and
f(x) = f(y).Since (Y, 3 is @12-T> and f(x) # f (), then there exist V; € Ny, (Y, f(x)),
Vo € Ny, (Y, f(y)), and VP2 nvy? = @. Since f is @11 »-continuous, then there ex-
ist U; € Ny, (X,x), U2 € Ny, (X, ) such that f(U}?) = V**> and f(U$?) < VJ? and
FWUP*) n f(UF?) = @. Hence we have U? nUy? = @. Therefore (X,T) is a @1.2-T».

O

DEFINITION 3.3. Let (X, T) be a topological space and @1,@2 € O(x,1).
(i) The family Q < O, (X) is called a @ -open cover of a set K if and only if
Kcu{U%2 |Ue€Q}.
(ii) Let the family Q € Oy, (X) be a @1,2-open cover of a set K. The subfamily Q*
of Q is called a @ 2-open subcover of the set K if and only if K < u{U®2 | U € Q*}
(see [7]).
(iii) Any subset K of X is called @, 2-compact if and only if each @, 2-open cover of
K has a finite @ 2-open subcover of K.
(iv) The set X is called @ 2-compact if and only if it is @1 >-compact (see [7]).

THEOREM 3.4. Let f be a @,y 2-continuous function defined from (X, 1) to (Y,9)
and A ¢ X be @, 2-compact. Then f(A) is 1 2-compact.
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PROOF. Let the family Qr4) = {V € Oy, (Y) | i € A} be a @1,2-open cover of f(A)
and y € f(A). There exist x € Aand iy € Asuchthaty = f(x) and y € V;,.. Since f'is
@1,.2y1 2-continuous, there exists Ui, € N, (X, x) such that f(Uff,Z) c Vi(iz and hence
Qa =1{U;, | ¥ € f(A), i € A} is a p-open cover of A. From @ -compactness of A,
there exists a finite subfamily A, of A such that A € Ujea, Ui,,. So the family Qj;( A=
{Vi, li€ Al € Qpa) is a g1 2-open cover of f(A). Then f(A) is g 2-compact. O

THEOREM 3.5. Let f:(X,T) — (Y,9) be a )2y, -continuous function and (X, T)
be a @1 2-compact space. Then (Y,9) is Y »-compact.

PROOF. The proof is immediate from Theorem 3.4. O

DEFINITION 3.6 [7]. Let (X, T) be a topological space and @1, @2 € O(x,1). A subset
D of X is called @, >-dense in X if and only if @, »-cl(D) = X.

THEOREM 3.7. Let f,g: (X,7T) — (Y,9) be @12y 2-continuous functions and >
regular with respect to Oy, (X) and let (Y,9) be @1,-T> space. If D < X is a closed
W1 2-dense set and f (x) = g(x) for each x € D. Then f = g.

PROOF. Suppose xp € X and x¢ ¢ D. Then f(xo) # g(xo). Since (Y, &) is @1 ,2-T>,
then there exist V; € Ny, (Y, f(x0)), V2 € Ny, (Y,g(x0)), and V’? nvy? = @. Since
f,g are @1y x-continuous at xo, then there exist U; € Ny, (X,X0), U2 € Ng, (X, x0)
such that f(U{?) < V'? and g(UJ?) < V2. By regularity of g», there exists Uy €
Ny, (X,x0) suchthat Ug’? < UJ? nU32. So, by V{2 " V"2 = &, we have U? "D = @ and
hence x ¢ @, 2-cl(D). This contradicts the @; »-closedness of D and D = @, 2-cl(D) =
X. So, we have D = X. O

THEOREM 3.8. Let (X;,T;), (Y;,9i) (i=1,2) be topological spaces, and F = f X f»:
(X1 X X2, T1 XT2) = (Y1 X Y2, 31 X&), ©11,P12 € Oxy,r), P21,P22 € Oxy,10), and let
Y11, Y12 € O(Y1,91)r W1, Y22 € O(yz,gz) be operators.

If f1: (X1,T1) = (Y1,91) is @11,12@11,12-continuous and f> : (X2,T2) — (Y2,92) is
®21,22W21,22-continuous, then F is a @i, 2-continuous function, where @,p; €
O (x1xX,11x12)s W1, W2 € O(v,xY2,9,x9,), and Yo is monotonous and compatible with 1>
and Y»».

PROOF. Let (x,¥) € X; xXp and V € Oy, (Y1 X Y2, (f1(x),f>())). Then there ex-
ist Vi € Oy, (Y1, f1(x)) and V, € Oy,, (Y2, fo()) such that (f1(x), fo(¥)) € Vi xV>.
Since f1 is @11,12W11,12-continuous and f> is @21 222 22-continuous, then there ex-
ist Uy € Og,, (X1,x) and U € Og,, (X2,) such that UP'? < f71(V1?) and US* <
Fr L (V). Since Uy x Us € Og, (X1 X X2, (x,)), we have F(UY2 x U3?') = f1(UT"?) x
F(UT*) e v xv)? < vz, Therefore, F is a g1 2y 2-continuous function. O

THEOREM 3.9. Let (X,T), (Y,9), and let (Z,@) be topological spaces and let f :
(X,7) = (Y,9), fo: (X, T) = (Z,w) be any functions. Let f : (X,T) — (Y X Z, T X
w) be a function defined by f(x) = (f1(x), fo(x)) for each x € X, and let 1,p> €
O(X,-,—), Wi, Yo € O(yls), Y1,Y2 € O(Z,w)y and §1,§2 (S O(Y><Z,T><w) be operators. Then the
following statements are true:

(i) ifAcX,B<Y,CcZ and f(A) € BxC, then fi(A) € B and f>(A) < C;
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(i) if T € Og, (Y X Z, f(x)), then there exist V € Oy, (Y, fi(x)), W € Oy, (Z, fo(x))
such that f(x) e VW and VV2 x WY2 c T%;

(iii) if Aj,Ap € X,BcY,Cc Z and fi(A1) X f2(Az2) € BxC, then f(A; N Ay) <
BxC.

THEOREM 3.10. Let (X,T), (Y,9), and (Z,@) be topological spaces and f,: (X, T)
- (Y,9) and f> : (X,T) — (Z,w) any functions. Let f:(X,7) - (YXZ,TXw) be a
function defined by f(x) = (f1(x), f2(x)) for each x € X and let ¢1,p2 € Ox 1),
Y1,2 € Ov,9), Y1,¥2 € Oz, and &1, &2 € O(yxz,txw) be operators with the property
&> compatible with Y, and y». Then f is @1 ,2&1 2-continuous if and only if f1 is @12y 2-
continuous and f» is Q1 2y ,2-continuous.

PROOF. (=).Let x € X,V € Oy, (Y, fi(x)), and W € Oy, (Z, f>(x)). Then we have
VXW e Og (Y XZ,f(x)). By @128 2-continuity of f, there exists U € Oy, (X1,X)
such that f(U®2) c (V x W)% = V¥2 x W2, By Theorem 3.9(i), we have f;(U%2) <
V%2 and fo(U%®2) < W2, and hence f; is @121 2-continuous and f> is @1.2¥1.2-
continuous.

(«). Conversely, let x € X and T € Og, (Y X Z, f(x)). By Theorem 3.9(ii), there exist
Ve Oy, Y, fi(x)) and W € Oy, (Z, f-(x)) such that f(x) € VW and V¥2 x W2 ¢
T#%2. Since f; is @121 2-continuous and f> is @2y 2-continuous, then there exist
U1, Uz € Og, (X1,x) such that f1 (U{?) € V¥2 and f,(U3?) € W2, and hence f; (U}’?) x
f2(UF?) c V2 x WY2 ¢ T, By Theorem 3.9(iii), we have f((U; nU,)%2) c T%. Thus
fis @128 2-continuous. |

THEOREM 3.11. Let (X,T), (Y,9), and (Z,@) be topological spaces and @, P> €
O, Y1,W2 € Oy, Y1,¥2 € Oz If f 1 (X,T) = (Y, 9) is @1,2y12-continuous
and g : (Y,9) — (Z,@) is Y1 ,2y1,2-continuous function. Then go f : (X,T) — (Z,w™) is
@1,2Y1,2-continuous.

PROOF. Let f:(X,T) — (Y,9) be a @y 2-continuous and g : (Y,9) - (Z,@)
a Y12y1,2-continuous function. Let any x € X and W € Oy, (Z,(g ° f)(x)). Since g
is W1 ,2y1,2-continuous at f(x), thereis a V € Oy, (Y, f(x)) such that g(V¥2) c w2,
Since fis @121 2-continuous at x, there exists U € O, (X, x) such that f(U%2) cV¥2,
Therefore, we obtain (g o f)(U%2) = g(f(U%2)) < g(V¥2) < W¥2, This proves the
@1,2y1,2-continuity of go f at x. O

DEFINITION 3.12 [7]. A topological space (X,T) is called @;2-hyperconnected if
X = U®2 for each U € Oy, (X).

THEOREM 3.13. If f: (X,T) — (Y,9) is a @1,y12-continuous surjection function
and (X, T) is @1 2-hyperconnected, then (Y,$) is 1 »-hyperconnected.

PROOF. Let any x € X and V € Oy, (Y, f(x)). By @1,y -continuity of f, there
exists U € Oy, (X,x) such that f(U%2) c V%2, Since (X, T) is @1 -hyperconnected,
we have Y = f(X) = f(U%2) = V%2 and hence Y = V%2, O
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