

COEFFICIENT INEQUALITIES FOR CERTAIN ANALYTIC FUNCTIONS

JUNICHI NISHIWAKI and SHIGEYOSHI OWA

Received 1 March 2001

For real α ($\alpha > 1$), we introduce subclasses $M(\alpha)$ and $N(\alpha)$ of analytic functions $f(z)$ with $f(0) = 0$ and $f'(0) = 1$ in U . The object of the present paper is to consider the coefficient inequalities for functions $f(z)$ to be in the classes $M(\alpha)$ and $N(\alpha)$. Further, the bounds of α for functions $f(z)$ to be starlike in U are considered.

2000 Mathematics Subject Classification: 30C45.

1. Introduction. Let A denote the class of functions $f(z)$ of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (1.1)$$

which are analytic in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$. Let $M(\alpha)$ be the subclass of A consisting of functions $f(z)$ which satisfy

$$\operatorname{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} < \alpha \quad (z \in U) \quad (1.2)$$

for some α ($\alpha > 1$). And let $N(\alpha)$ be the subclass of A consisting of functions $f(z)$ which satisfy

$$\operatorname{Re} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} < \alpha \quad (z \in U) \quad (1.3)$$

for some α ($\alpha > 1$). Then, we see that $f(z) \in N(\alpha)$ if and only if $zf'(z) \in M(\alpha)$. We give examples of functions $f(z)$ in the classes $M(\alpha)$ and $N(\alpha)$.

REMARK 1.1. For $1 < \alpha \leq 4/3$, the classes $M(\alpha)$ and $N(\alpha)$ were introduced by Uralegaddi et al. [2].

EXAMPLE 1.2. (i) $f(z) = z(1-z)^{2(\alpha-1)} \in M(\alpha)$.

(ii) $g(z) = (1/(2\alpha-1))\{1-(1-z)^{2\alpha-1}\} \in N(\alpha)$.

PROOF. Since $f(z) \in M(\alpha)$ if and only if

$$\operatorname{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} < \alpha, \quad (1.4)$$

we can write

$$\frac{\alpha - zf'(z)/f(z)}{\alpha - 1} = \frac{1+z}{1-z}, \quad (1.5)$$

which is equivalent to

$$\frac{f'(z)}{f(z)} - \frac{1}{z} = \frac{2(\alpha-1)}{1-z}. \quad (1.6)$$

Integrating both sides of the above equality, we have

$$f(z) = z(1-z)^{2(\alpha-1)} \in M(\alpha). \quad (1.7)$$

Next, since $g(z) \in N(\alpha)$ if and only if $zg'(z) \in M(\alpha)$,

$$zg'(z) = z(1-z)^{2(\alpha-1)}. \quad (1.8)$$

For function $g(z) \in N(\alpha)$, it follows that

$$g(z) = -\frac{1}{2\alpha-1}(1-z)^{2\alpha-1} + \frac{1}{2\alpha-1} = \frac{1}{2\alpha-1}\{1 - (1-z)^{2\alpha-1}\} \in N(\alpha). \quad (1.9)$$

□

2. Coefficient inequalities for the classes $M(\alpha)$ and $N(\alpha)$. We try to derive sufficient conditions for $f(z)$ which are given by using coefficient inequalities.

THEOREM 2.1. *If $f(z) \in A$ satisfies*

$$\sum_{n=2}^{\infty} \{(n-1) + |n-2\alpha+1|\} |a_n| \leq 2(\alpha-1) \quad (2.1)$$

for some α ($\alpha > 1$), then $f(z) \in M(\alpha)$.

PROOF. Suppose that

$$\sum_{n=2}^{\infty} \{(n-1) + |n-2\alpha+1|\} |a_n| \leq 2(\alpha-1) \quad (2.2)$$

for $f(z) \in A$.

It suffices to show that

$$\left| \frac{zf'(z)/f(z) - 1}{zf'(z)/f(z) - (2\alpha-1)} \right| < 1 \quad (z \in U). \quad (2.3)$$

We have

$$\begin{aligned} \left| \frac{zf'(z)/f(z) - 1}{zf'(z)/f(z) - (2\alpha-1)} \right| &\leq \frac{\sum_{n=2}^{\infty} (n-1) |a_n| |z|^{n-1}}{2(\alpha-1) - \sum_{n=2}^{\infty} |n-2\alpha+1| |a_n| |z|^{n-1}} \\ &< \frac{\sum_{n=2}^{\infty} (n-1) |a_n|}{2(\alpha-1) - \sum_{n=2}^{\infty} |n-2\alpha+1| |a_n|}. \end{aligned} \quad (2.4)$$

The last expression is bounded above by 1 if

$$\sum_{n=2}^{\infty} (n-1) |a_n| \leq 2(\alpha-1) - \sum_{n=2}^{\infty} |n-2\alpha+1| |a_n| \quad (2.5)$$

which is equivalent to condition (2.1). This completes the proof of the theorem. □

By using [Theorem 2.1](#), we have the following corollary.

COROLLARY 2.2. *If $f(z) \in A$ satisfies*

$$\sum_{n=2}^{\infty} n \{(n-1) + |n-2\alpha+1|\} |a_n| \leq 2(\alpha-1) \quad (2.6)$$

for some α ($\alpha > 1$), then $f(z) \in N(\alpha)$.

PROOF. From $f(z) \in N(\alpha)$ if and only if $zf'(z) \in M(\alpha)$, replacing a_n by na_n in [Theorem 2.1](#) we have the corollary. \square

In view of [Theorem 2.1](#) and [Corollary 2.2](#), if $1 < \alpha \leq 3/2$, then $n-2\alpha+1 \geq 0$ for all $n \geq 2$. Thus we have the following corollary.

COROLLARY 2.3. (i) *If $f(z) \in A$ satisfies*

$$\sum_{n=2}^{\infty} (n-\alpha) |a_n| \leq \alpha-1 \quad (2.7)$$

for some α ($1 < \alpha \leq 3/2$), then $f(z) \in M(\alpha)$.

(ii) *If $f(z) \in A$ satisfies*

$$\sum_{n=2}^{\infty} n(n-\alpha) |a_n| \leq \alpha-1 \quad (2.8)$$

for some α ($1 < \alpha \leq 3/2$), then $f(z) \in N(\alpha)$.

3. Starlikeness for functions in $M(\alpha)$ and $N(\alpha)$. By Silverman [1], we know that if $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} n |a_n| \leq 1, \quad (3.1)$$

then $f(z) \in S^*$, where S^* denotes the subclass of A consisting of all univalent and starlike functions $f(z)$ in U . Thus we have the following theorem.

THEOREM 3.1. *If $f(z) \in A$ satisfies*

$$\sum_{n=2}^{\infty} (n-\alpha) |a_n| \leq \alpha-1 \quad (3.2)$$

for some α ($1 < \alpha \leq 4/3$), then $f(z) \in S^ \cap M(\alpha)$, therefore, $f(z)$ is starlike in U . Further, if $f(z) \in A$ satisfies*

$$\sum_{n=2}^{\infty} n(n-\alpha) |a_n| \leq \alpha-1 \quad (3.3)$$

for some α ($1 < \alpha \leq 3/2$), then $f(z) \in S^ \cap N(\alpha)$, therefore, $f(z)$ is starlike in U .*

PROOF. Consider α such that

$$\sum_{n=2}^{\infty} n|a_n| \leq \sum_{n=2}^{\infty} \frac{n-\alpha}{\alpha-1} |a_n| \leq 1. \quad (3.4)$$

Then we have $f(z) \in S^* \cap M(\alpha)$ by means of [Theorem 2.1](#). This inequality holds true if

$$n \leq \frac{n-\alpha}{\alpha-1} \quad (n = 2, 3, 4, \dots). \quad (3.5)$$

Therefore, we have

$$1 < \alpha \leq 2 - \frac{2}{n+1} \quad (n = 2, 3, 4, \dots), \quad (3.6)$$

which shows that $1 < \alpha \leq 4/3$. Next, considering α such that

$$\sum_{n=2}^{\infty} n|a_n| \leq \sum_{n=2}^{\infty} \frac{n(n-\alpha)}{\alpha-1} |a_n| \leq 1, \quad (3.7)$$

we have

$$n \leq \frac{n(n-\alpha)}{\alpha-1} \quad (n = 2, 3, 4, \dots), \quad (3.8)$$

which is equivalent to

$$1 < \alpha \leq \frac{n+1}{2} \quad (n = 2, 3, 4, \dots). \quad (3.9)$$

This implies that $1 < \alpha \leq 3/2$. \square

Finally, by virtue of the result for convex functions by Silverman [1], we have, if $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} n^2 |a_n| \leq 1, \quad (3.10)$$

then $f(z) \in K$, where K denotes the subclass of A consisting of all univalent and convex functions $f(z)$ in U . Using the same method as in the proof of [Theorem 3.1](#), we derive the following theorem.

THEOREM 3.2. *If $f(z) \in A$ satisfies*

$$\sum_{n=2}^{\infty} n(n-\alpha) |a_n| \leq \alpha-1 \quad (3.11)$$

for some α ($1 < \alpha \leq 4/3$), then $f(z) \in K \cap N(\alpha)$, therefore, $f(z)$ is convex in U .

4. Bounds of α for starlikeness. Note that the sufficient condition for $f(z)$ to be in the class $M(\alpha)$ is given by

$$\sum_{n=2}^{\infty} \{(n-1) + |n-2\alpha+1|\} |a_n| \leq 2(\alpha-1). \quad (4.1)$$

Since, if $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} n |a_n| \leq 1, \quad (4.2)$$

then $f(z) \in S^*$ (cf. [1]). It is interesting to find the bounds of α for starlikeness of $f(z) \in M(\alpha)$. To do this, we have to consider the following inequality:

$$\sum_{n=2}^{\infty} n |a_n| \leq \frac{1}{2(\alpha-1)} \sum_{n=2}^{\infty} \{(n-1) + |n-2\alpha+1|\} |a_n| \leq 1 \quad (4.3)$$

which is equivalent to

$$\sum_{n=2}^{\infty} \{|n-2\alpha+1| + (3-2\alpha)n\} |a_n| \geq 0. \quad (4.4)$$

We define

$$F(n) = |n-2\alpha+1| + (3-2\alpha)n \quad (n \geq 2). \quad (4.5)$$

Then, if $F(n)$ satisfies

$$\sum_{n=2}^{\infty} F(n) |a_n| \geq 0, \quad (4.6)$$

then $f(z)$ belongs to S^* .

THEOREM 4.1. *Let $f(z) \in A$ satisfy*

$$\sum_{n=2}^{\infty} \{(n-1) + |n-2\alpha+1|\} |a_n| \leq 2(\alpha-1) \quad (4.7)$$

for some $\alpha > 1$. Further, let δ_k be defined by

$$\delta_k = \sum_{n=k}^{\infty} F(n) |a_n|. \quad (4.8)$$

Then,

- (i) if $1 < \alpha \leq 3/2$, then $f(z) \in S^*$,
- (ii) if $3/2 \leq \alpha \leq \min(13/8, (3+\delta_3)/2)$, then $f(z) \in S^*$,
- (iii) if $8/3 \leq \alpha \leq \min(17/10, (12-\delta_4 + \sqrt{\delta_4^2 + 48\delta_4 + 48})/12)$, then $f(z) \in S^*$.

PROOF. For $1 < \alpha \leq 3/2$, we know that

$$n-2\alpha+1 \geq 3-2\alpha \geq 0 \quad (n \geq 2), \quad (4.9)$$

that is, $F(n) \geq 0$ ($n \geq 2$). Therefore, we have

$$\sum_{n=2}^{\infty} F(n) |a_n| \geq 0. \quad (4.10)$$

If $3/2 \leq \alpha \leq 13/8$, then $F(2) = 3-2\alpha \leq 0$ and

$$F(n) = 2n(2-\alpha) + 1 - 2\alpha \geq 13 - 8\alpha \geq 0 \quad (4.11)$$

for $n \geq 3$. Further, we know that

$$|a_n| \leq \frac{2(\alpha-1)}{(n-1) + |n-2\alpha+1|} \quad (n \geq 2), \quad (4.12)$$

then $|a_2| \leq 1$. Therefore, we obtain that

$$\sum_{n=2}^{\infty} F(n) |a_n| = F(2) |a_2| + \sum_{n=3}^{\infty} F(n) |a_n| \geq 3 - 2\alpha + \delta_3 \geq 0 \quad (4.13)$$

for

$$\frac{3}{2} \leq \alpha \leq \min\left(\frac{13}{8}, \frac{3+\delta_3}{2}\right). \quad (4.14)$$

Furthermore, if $13/8 \leq \alpha \leq 17/10$, then

$$\begin{aligned} F(2) &= 3 - 2\alpha \leq 0, \\ F(3) &= |4 - 2\alpha| + 3(3 - 2\alpha) = 13 - 8\alpha \leq 0, \\ F(n) &= |n - 2\alpha + 1| + (3 - 2\alpha)n = 4n + 1 - 2(n+1)\alpha \geq \frac{3(n-4)}{5} \geq 0 \end{aligned} \quad (4.15)$$

for $n \geq 4$. Noting that $|a_2| \leq 1$ and $|a_3| \leq (\alpha-1)/(3-\alpha)$, we conclude that

$$\begin{aligned} \sum_{n=2}^{\infty} F(n) |a_n| &= F(2) |a_2| + F(3) |a_3| + \sum_{n=4}^{\infty} F(n) |a_n| \\ &\geq (3 - 2\alpha) + (13 - 8\alpha) \frac{\alpha-1}{3-\alpha} + \delta_4 \geq 0, \end{aligned} \quad (4.16)$$

for α that satisfies

$$6\alpha^2 - (12 - \delta_4)\alpha + 4 - 3\delta_4 \leq 0. \quad (4.17)$$

This shows that

$$\frac{8}{3} \leq \alpha \leq \min\left(\frac{17}{10}, \frac{12 - \delta_4 + \sqrt{\delta_4^2 + 48\delta_4 + 48}}{12}\right). \quad (4.18)$$

This completes the proof of [Theorem 4.1](#). \square

Finally, by virtue of [Theorem 4.1](#), we may suppose that if $f(z) \in A$ satisfies

$$\sum_{n=2}^{\infty} \{(n-1) + |n-2\alpha+1|\} |a_n| \leq 2(\alpha-1) \quad (4.19)$$

for some $1 < \alpha < 2$, then $f(z) \in S^*$.

REFERENCES

- [1] H. Silverman, *Univalent functions with negative coefficients*, Proc. Amer. Math. Soc. **51** (1975), 109-116.
- [2] B. A. Uralegaddi, M. D. Ganigi, and S. M. Sarangi, *Univalent functions with positive coefficients*, Tamkang J. Math. **25** (1994), no. 3, 225-230.

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru