
IJMMS 29:5 (2002) 271–277
PII. S0161171202007378

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

RADIUS OF STRONGLY STARLIKENESS FOR CERTAIN
ANALYTIC FUNCTIONS

OH SANG KWON and SHIGEYOSHI OWA

Received 13 April 2001

For analytic functions f(z)= zp+ap+1zp+1+··· in the open unit disk U and a polynomial

Q(z) of degree n> 0, the function F(z)= f(z)[Q(z)]β/n is introduced. The object of the
present paper is to determine the radius of p-valently strongly starlikeness of order γ for
F(z).

2000 Mathematics Subject Classification: 30C45.

1. Introduction. Let �p (p is a fixed integer � 1) denote the class of functions f(z)
of the form

f(z)= zp+
∞∑

k=p+1

akzk (1.1)

which are analytic in the open unit disk U= {z ∈ C : |z|< 1}. Let Ω denote the class of

bounded functions w(z) analytic in U and satisfying the conditions w(0) = 0 and

|w(z)| � |z|, z ∈ U. We use � to denote the class of functions p(z) = 1+ c1z +
c2z2+ ··· which are analytic in U and satisfy Rep(z) > 0 (z ∈ U).

For 0�α<p and |λ|<π/2, we denote by �λp(α), the family of functions g(z)∈�p

which satisfy

zg′(z)
g(z)

≺ p+
{
2(p−α)e−iλ cosλ−p}z

1−z , z ∈ U, (1.2)

where ≺ means the subordination. From the definition of subordinations, it follows

that g(z)∈�p has the representation

zg′(z)
g(z)

= p+
{
2(p−α)e−iλ cosλ−p}w(z)

1−w(z) , (1.3)

where w(z) ∈ Ω. Clearly, �λp(α) is a subclass of p-valent λ-spiral functions of order

α. For λ = 0, we have the class �∗p(α), 0 � α < p, of p-valent starlike functions of

order α, investigated by Goluzina [5].

A function f(z)∈�p is said to be p-valently strongly starlike of order γ, 0< γ � 1,

if it satisfies

∣∣∣∣arg
{
zf ′(z)
f(z)

}∣∣∣∣� π2 γ. (1.4)
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Başgöze [1, 2] has obtained sharp inequalities of univalence (starlikeness) for certain

polynomials of the form F(z)= f(z)[Q(z)]β/n, where β is real and Q(z) is a polyno-

mial of degree n > 0 all of whose zeros are outside or on the unit circle {z : |z| = 1}.
Rajasekaran [7] extended Başgöze’s results for certain classes of analytic functions of

the form F(z) = f(z)[Q(z)]β/n. Recently, Patel [6] generalized some of the work of

Rajasekaran and Başgöze for functions belonging to the class �λp(α). That is, deter-

mine the radius of starlikeness for some classes of p-valent analytic functions of the

polynomial form F(z).
In the present paper, we extend the results of Patel [6]. Thus, we determine the

radius of p-valently strongly starlike of order γ for polynomials of the form F(z) in

such problems.

2. Some lemmas. Before proving our next results, we need the following lemmas.

Lemma 2.1 (see Gangadharan [4]). For |z| � r < 1, |zk| = R > r ,

∣∣∣∣ z
z−zk +

r 2

R2−r 2

∣∣∣∣� Rr
R2−r 2

. (2.1)

Lemma 2.2 (see Ratti [8]). If φ(z) is analytic in U and |φ(z)| � 1 for z ∈ U, then for

|z| = r < 1,

∣∣∣∣zφ′(z)+φ(z)1+zφ(z)
∣∣∣∣� 1

1−r . (2.2)

Lemma 2.3 (see Causey and Merkes [3]). If p(z) = 1+c1z+c2z+··· ∈ �, then for

|z| = r < 1,

∣∣∣∣zp′(z)p(z)

∣∣∣∣� 2r
1−r 2

. (2.3)

This estimate is sharp.

Lemma 2.4 (see Patel [6]). Suppose g(z)∈�λp(α). Then for |z| = r < 1,

∣∣∣∣zg′(z)g(z)
−
(
p+ 2(p−α)eiλr 2 cosλ

1−r 2

)∣∣∣∣� 2(p−α)r cosλ
1−r 2

. (2.4)

This result is sharp.

Lemma 2.5 (see Gangadharan [4]). If Ra � Re(a)sin((π/2)γ)− Im(a)cos((π/2)γ),
Im(a) � 0, then the disk |w −a| � Ra is contained in the sector |argw| � (π/2)γ,

0< γ � 1.

3. Main results. Our first theorem is the following one.

Theorem 3.1. Suppose that

F(z)= f(z)[Q(z)]β/n, (3.1)

where β is real and Q(z) is a polynomial of degree n > 0 with no zeros in |z| < R,
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R � 1. If f(z)∈�p satisfies

Re

[(
f(z)
g(z)

)1/δ
]
> 0, 0< δ� 1, z ∈ U, (3.2)

Re
[
g(z)
h(z)

]
> 0, z ∈ U, (3.3)

for some g(z) ∈ �p and h(z) ∈ �λp(α), then F(z) is p-valently strongly starlike of

order γ in |z|<R(γ), where R(γ) is the smallest positive root of the equation

r 4
[
(p+β)sin

(
π
2
γ
)
+2(p−α)cosλsin

(
λ− π

2
γ
)]

+r 3[|β|R+2(p−α)cosλ+2(δ+1)
]

−r 2
[(
p
(
1+R2)+β)sin

(
π
2
γ
)
+2(p−α)R2 cosλsin

(
λ− π

2
γ
)]

−r[|β|R+2(p−α)R2 cosλ+2(δ+1)R2]+pR2 sin
(
π
2
γ
)
= 0.

(3.4)

Proof. We choose a suitable branch of (f (z)/g(z))1/δ so that (f (z)/g(z))1/δ is

analytic in U and takes the value 1 at z = 0. Thus from (3.2) and (3.3), we have

F(z)= pδ1(z)p2h(z)
[
Q(z)

]β/n, (3.5)

where pj(z)∈� (j = 1,2).
Then

zF ′(z)
F(z)

= δzp
′
1(z)

p1(z)
+ zp

′
2(z)

p2(z)
+ zh

′(z)
h(z)

+ β
n

n∑
k=1

z
z−zk . (3.6)

Since h(z)∈�λp(α), by Lemma 2.4, we have

∣∣∣∣zh′(z)h(z)
−
(
p+ 2(p−α)eiλr 2 cosλ

1−r 2

)∣∣∣∣� 2(p−α)r cosλ
1−r 2

. (3.7)

Using (3.6) and (3.7) with Lemmas 2.1 and 2.3, we get

∣∣∣∣zF ′(z)F(z)
−
(
p+ 2(p−α)eiλr 2 cosλ

1−r 2
− βr 2

R2−r 2

)∣∣∣∣
� 2

{
(p−α)r cosλ+r(δ+1)

}
1−r 2

+ |β|Rr
R2−r 2

.

(3.8)

Using Lemma 2.5, we get that the above disk is contained in the sector |argw| <
(π/2)γ provided the inequality

2
{
(p−α)r cosλ+r(δ+1)

}
1−r 2

+ |β|Rr
R2−r 2

�
(
p+ 2(p−α)r 2 cos2λ

1−r 2
− βr 2

R2−r 2

)
sin
(
π
2
γ
)

− 2(p−α)r 2 sinλcosλ
1−r 2

cos
(
π
2
γ
)

(3.9)
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is satisfied. The above inequality is simplified to T(r)� 0, where

T(r)= r 4
[(
p−2(p−α)cos2λ+β)sin

(
π
2
γ
)
+(p−α)sin2λcos

(
π
2
γ
)]

+r 3[|β|R+2(p−α)cosλ+2(δ+1)
]

+r 2
[(−pR2−p+2(p−α)R2 cos2λ−β)sin

(
π
2
γ
)
−(p−α)R2 sin2λcos

(
π
2
γ
)]

−r[|β|R+2(p−α)R2 cosλ+2(δ+1)R2]+pR2 sin
(
π
2
γ
)
.

(3.10)

Since T(0) > 0 and T(1) < 1, there exists a real root of T(r)= 0 in (0,1). Let R(γ) be

the smallest positive root of T(r)= 0 in (0,1). Then F(z) is p-valent strongly starlike

of order γ in |z|<R(γ).
Remark 3.2. For R = 1 and γ = 1, Theorem 3.1 reduces to a result by Patel [6].

Theorem 3.3. Suppose that F(z) is given by (3.1). If f(z) ∈ �p satisfies (3.2) for

some g(z) ∈ �λp(α), then F(z) is p-valently strongly starlike of order γ in |z| < R(γ),
where R(γ) is the smallest positive root of the equation

r 4
[
(p+β)sin

(
π
2
γ
)
+2(p−α)cosλsin

(
λ− π

2
γ
)]

+r 3[|β|R+2(p−α)cosλ+2δ
]

−r 2
[(
p
(
1+R2)+β)sin

(
π
2
γ
)
+2(p−α)R2 cosλsin

(
λ− π

2
γ
)]

−r[|β|R+2(p−α)R2 cosλ+2δR2]+pR2 sin
(
π
2
γ
)
= 0.

(3.11)

Proof. If f(z)∈�p satisfies (3.2) for some g(z)∈�λp(α), then

zF ′(z)
F(z)

= δzp
′(z)

p(z)
+ zg

′(z)
g(z)

+ β
n

n∑
k=1

z
z−zk . (3.12)

Using Lemma 2.4, we get

∣∣∣∣zg′(z)g(z)
−
(
p+ 2(p−α)eiλr 2 cosλ

1−r 2

)∣∣∣∣� 2(p−α)r cosλ
1−r 2

. (3.13)

By (3.12) and (3.13) with Lemmas 2.1 and 2.3, we have

∣∣∣∣zF ′(z)F(z)
−
(
p+ 2(p−α)eiλr 2 cosλ

1−r 2
− βr 2

R2−r 2

)∣∣∣∣
� 2

{
(p−α)r cosλ+rδ}

1−r 2
+ |β|Rr
R2−r 2

.

(3.14)

The remaining parts of the proof can be proved by a method similar to the one

given in the proof of Theorem 3.1.

With λ= 0, β= 0, δ= 1, R = 1, and γ = 1, Theorem 3.3 gives the following corollary.
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Corollary 3.4. Suppose that f(z) is in �p . If Re(f (z)/g(z)) > 0 for z ∈ U and

g(z)∈�∗p(α), then f(z) is p-valently starlike for

|z|< p

(p+1−α)+
√
α2−2α+2p+1

. (3.15)

Theorem 3.5. Suppose that F(z) is given by (3.1). If f(z)∈�p satisfies

∣∣∣∣
(
f(z)
g(z)

)1/δ
−1
∣∣∣∣< 1, 0< δ� 1, psin

(
π
2
γ
)
> δ, (3.16)

Re
(
g(z)
h(z)

)
> 0, z ∈ U (3.17)

for some g(z) ∈ �p and h(z) ∈ �λp(α), then F(z) is p-valently strongly starlike of

order γ in |z|<R(γ), where R(γ) is the smallest positive root of the equation

r 4
[
(p+β)sin

(
π
2
γ
)
+2(p−α)cosλsin

(
λ− π

2
γ
)]

+r 3[|β|R+2(p−α)cosλ+2+δ]

−r 2
[(
p
(
1+R2)+β)sin

(
π
2
γ
)
+2(p−α)R2 cosλsin

(
λ− π

2
γ
)
+δ
]

−r[|β|R+2(p−α)R2 cosλ+2(δ+1)R2]+pR2 sin
(
π
2
γ
)
−δR2 = 0.

(3.18)

Proof. We choose a suitable branch of (f (z)/g(z))1/δ so that (f (z)/g(z))1/δ is

analytic in U and takes the value 1 at z = 0. From (3.16), we deduce that

f(z)= g(z)(1+w(z))δ, w(z)∈Ω. (3.19)

So that

F(z)= p(z)h(z)(1+zφ(z))δ[Q(z)]β/n, (3.20)

where φ(z) is analytic in U and satisfies |φ(z)| � 1 and p ∈� for z ∈ U.

We have

zF ′(z)
F(z)

= zh
′(z)

h(z)
+ zp

′(z)
p(z)

+δ
(
zφ′(z)+φ(z)

1+zφ(z)
)
+ β
n

n∑
k=1

z
z−zk . (3.21)

Using Lemma 2.4 and (3.21), we have

∣∣∣∣zF ′(z)F(z)
−
(
p+ 2(p−α)eiλr 2 cosλ

1−r 2

)∣∣∣∣
� 2

{
(p−α)r cosλ+r}+δ(1+r)

1−r 2
+ |β|Rr
R2−r 2

.

(3.22)

So, using Lemma 2.5 and (3.22), the result can be proved by using a method similar

to the one given in the proof of Theorem 3.1.
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Theorem 3.6. Suppose that F(z) is given by (3.1). If f(z) ∈ �p satisfies (3.16) for

some g(z) ∈ �λp(α), then F(z) is p-valently strongly starlike of order γ in |z| < R(γ),
where R(γ) is the smallest positive root of the equation

r 4
[
(p+β)sin

(
π
2
γ
)
+2(p−α)cosλsin

(
λ− π

2
γ
)]

+r 3[|β|R+2(p−α)cosλ+δ]

−r 2
[(
p
(
1+R2)+β)sin

(
π
2
γ
)
+2(p−α)R2 cosλsin

(
λ− π

2
γ
)
+δ
]

−r[|β|R+2(p−α)R2 cosλ+δR2]+pR2 sin
(
π
2
γ
)
−δR2 = 0.

(3.23)

Proof. We choose a suitable branch of (f (z)/g(z))1/δ so that (f (z)/g(z))1/δ is

analytic in U and takes the value 1 at z = 0. Since f(z)∈�p satisfies (3.16) for some

g(z)∈�λp(α), we have

F(z)= g(z)(1+zφ(z))[Q(z)]β/n, (3.24)

where φ(z) is analytic in U and satisfies the condition |φ(z)| � 1 for z ∈ U. Thus,

we have

zF ′(z)
F(z)

= zg
′(z)

g(z)
+δ
(
zφ′(z)+φ(z)

1+zφ(z)
)
+ β
n

n∑
k=1

z
z−zk . (3.25)

Using Lemma 2.4 and (3.25), we get

∣∣∣∣zF ′(z)F(z)
−
(
p+ 2(p−α)eiλr 2 cosλ

1−r 2

)∣∣∣∣
� 2(p−α)r cosλ+δ(1+r)

1−r 2
+ |β|Rr
R2−r 2

.

(3.26)

Using Lemma 2.5 and (3.26) and a method similar to the one given in the proof of

Theorem 3.1, we complete the proof of the theorem.

Remark 3.7. Some of the results of Patel [6] can be obtained from Theorem 3.6 by

taking R = 1 and γ = 1.
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