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1. Introduction. The Diophantine equation x2 + C = ", where x and 7y are pos-
itive integers, n > 3 and C is a given integer, has received considerable interest.
The earliest reference seems to be an assertion by Fermat that he had shown that
when C = 2, n = 3, the only solution is given by x = 5, ¥ = 3; a proof was pub-
lished by Euler in 1770. The first result for general n is due to Lebesgue [9] who
proved that there are no solutions for C = 1. Ljunggren [10] solved this equation
for C = 2, Nagell [13, 14] solved it for C = 3, 4, and 5 and Chao [5] proved that it
has no solutions for C = —1. For an extensive list of references one should consult
Cohn’s beautiful paper [6] in which he develops a method by which he finds all solu-
tions of the above equation for 77 of the values of C < 100. This equation was later
solved for two additional values of C < 100 (namely, C = 74 and C = 86) by Mignotte
and de Weger [12]. It is interesting to mention that the equation x2 + 7 = y" is still
unsolved.

In recent years, a different form of the above equation has been considered, namely,
when C is no longer a fixed integer but a power of a fixed prime. Le [8] investigated
the equation x2 +2™ = y". Arif and Muriefah solved the equation x2 + 3™ = y" when
m is odd (see [2]). They also gave partial results in the case when m is even (see [1])
but the general solution in the case m is even was found by Luca in [11].

For any nonzero integer k, let P(k) be the largest prime dividing k. Let C; be any
fixed positive constant. It follows, from the work of Bugeaud [4] and Turk [15], that if

x’+z=y" with (x,y) =1, P(z) < Cy, (1.1)
then max(|x|,|y[,n) is bounded by a constant computable in terms of C; alone.
In this paper, we find all solutions of (1.1) when C; =5 and z > 0. More precisely,
we find all solutions of the equation

x?+2%.3 =" witha,b>=0, n=3, (x,y) = 1. (1.2)

The proof uses the new result on the existence of primitive divisors of the Lucas
numbers due to Bilu et al. [3] as well as a computational result of de Weger [7].
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2. The result

THEOREM 2.1. All positive solutions of the equation
x?+2%.3 =" witha,b>=0,n=3, (x,y) =1 (2.1)
have n = 4 or n = 3. For n = 4, the solutions are
(x,y) =(7,3),(23,5),(7,5),(47,7),(287,17). (2.2)

For n = 3, the solutions are

(x,y)=(5,3),(11,5),(10,7),(17,7),(46,13),(35,13),

(595,73),(955,97),(2681,193),(39151,1153). (2-3)

In the statement of the theorem we have listed only the values of x, v, and n as
the values of the parameters a and b that can be determined from the prime factor
decomposition of x2 - y™ once x, y, and n are given.

From Lebesgue’s result, we know that the equation x? + 1 = " has no positive
solutions for n > 3 and from the work of Arif, Muriefah, and Luca, we know that the
only positive solutions of the equation x?+3™ = y" with (x,y) = 1 are (x,y,m,n) =
(10,7,5,3) and (46,13,4,3). From now on, we assume that a > 0. In particular, both
x and y are odd.

3. The case n + 3 or 4. In this section, we show that it suffices to assume that
n € {3,4}.Indeed, assume that n + 4. We may certainly assume that 7 is an odd prime.
If n # 3, it follows that n > 5. Write 24 - 3? = dz? where d € {1,2,3,6}. Equation (2.1)
can be written as

(x+ivdz) (x - iVdz) = y". (3.1)

Since x is odd and dz? is even, it follows that the two ideals [(x + i~/dz)] and
[(x —iv/dz)] are coprime in the ring of integers of Q(i/d). Since the class number
of Q(iv/d) is 1 or 2 and n > 5 is prime, it follows that there exists an integer u and a
root of unity € in Q (i~/d) such that

x+ivdz = eu, x—ivdz = zu". (3.2)

Since ¢ is a root of unity belonging to a quadratic extension of Q, it follows that €k = 1
for some k € {1,2,3,4,6}. Since n > 5 is prime, it follows that up to a substitution one
may assume that € = 1 in system (3.2). From (3.2) with € = 1, it follows that

2iVdz = u" —i". (3.3)

Since certainly

€z, (3.4
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we have that

P(L=) <s. (35)

From (3.5), we find that the Lucas number given by formula (3.4) has no primitive
divisor. From [3], it follows that there are at most 10 pairs (u,n) satisfying inequality
(3.5) and all of them appear in [3, Table 1]. A quick investigation reveals that none
of the w’s from [3, Table 1] belongs to Q(iv/d) for some d € {1,2,3,6}, which is the
desired contradiction.

4. The case n =4. Let S = {k | P(k) <5}. Then, we have the following preliminary
result.

LEMMA 4.1. All solutions of the equation
x2=k=+l withk,l>0, kl€eS, (k])=1 (4.1)
are

(x,k,1) =(1,2,1),(2,3,1),(3,8,1),(5,24,1),(7,48,1),

(17,288,1),(1,4,3),(1,9,8),(5,16,9),(5,27,2),(7,81,32). @-2)

PROOF OF LEMMA 4.1. This lemma is a particular case of a result of de Weger [7,
Chapter 7]. O

THE PROOF OF THE THEOREM FOR 1 = 4. Rewrite (2.1) as
(2 =x)(y?+x) =24.3b, (4.3)

Since a > 0 and (x,y) = 1, it follows that (y2 —x,y?%+x) = 2. Thus,

y2-x=k, y?’+x=1, withkl>0, kleS, (k1) =2. (4.4)
Hence,
k 1
2 _ -
Y =5t (4.5)

where k/2, /2 € § are positive and coprime. By Lemma 4.1, we obtain that (4.5) has
only 6 solutions. Five of them lead to solutions (2.2) of (2.1). One of the solutions of
(4.5) leads to

22422.3 =24 (4.6)

which is not a convenient solution of (2.1) because x = 2 and y = 2 are not coprime.
The case n = 4 is therefore settled.

5. The case n = 3. We begin with another lemma.

LEMMA 5.1. The only solutions of the equation

3x*>=k=+l withk,l>0, k,LeS, (k)€ {1,3} (5.1)
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are
(x,k,1) =(1,2,1),(1,4,1),(1,6,3),(2,9,3),
(3,24,3),(5,72,3),(7,144,3),(17,864,3), (5.2)
(1,12,9),(1,27,24),(5,48,27),(5,81,6),(7,243,96).

PROOF OF LEMMA 5.1. This lemma too is a particular instance of the more general
computation of de Weger [7, Chapter 7]. O

THE PROOF OF THE THEOREM FOR 7 = 3. Write again 22 - 3% = dz2 where d €
{1,2,3,6}. From arguments employed in Section 3, we know that there exist u and ¢
in Q (iv/d) such that v = |ul|?, ¢ is a root of unity and

x+ivdz =eud, x-ivdz=zu’. (5.3)
Clearly,
2ivdz = sud —Fu°. (5.4)

We distinguish two cases.
CASE 1 (¢ = 1). Equation (5.4) reads

2ivdz = ud —ud. (5.5)

Assume first that u = a + ib+/d with a and b integers. Then, we get

2iNdz = (a+ibVd)® - (a—ibVd)® (5.6)
or
2idz = 2iNdb(3a? — db?). (5.7)
Hence, b | z and
3a2 = db? + %. (5.8)

Let k = db? and | = z/b. Notice that k,l € S. Moreover, notice that (k,l) € {1,3}.
Indeed, if (k,1) ¢ {1,3}, it follows that there exists a prime p such that p | (k,l,a). In
particular, p | db? and p | a, therefore p | a® +db? = y. Since p | z and 2% -3V = dz2,
we come to p | 24 - 3P, It follows now that p | (173 —2%.3%) = x2 and therefore p | x.
This contradicts the fact that x and y are coprime. Now all solutions of (5.8) are given
by Lemma 5.1. For example, the solution

3-12=21+1 (5.9)

gives eithera=1,d=2,b=1,andz=1ora=1,d =1, b =1, and z = 2. The first
possibility yields v = a® + db? = 1+2 = 3 and dz? = 2, which leads to the solution
33 =2 +52 of (2.1). The second possibility gives y = a? + db? = 2 and dz? = 4, which
leads to the solution 23 = 22 + 22 of (2.1). This is not an acceptable solution, since
x =2 and y = 2 are not coprime.
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All the solutions of (2.1) for the case n = 3 except for (x,y) = (10,7) are obtained
in this way by identifying a, b, d, and z from (5.8) via Lemma 5.1.
When d = 3, we also need to investigate the case in which

w o Ariv3b (5.10)
2
for some odd integers a and b. From (5.5), we simply get that
16iv3z = (a+iv3b)’ — (a—iv3b)® (5.11)
or
16i+/3z = 2iv/3b(3a® - 3b?). (5.12)
It follows that b divides z and
3a? =3b2¢872. (5.13)

From Lemma 5.1, we derive that (5.13) has only two convenient solutions, namely,
3-12=3-32-8-3and 3-7% = 3-3%*-8-12. These lead to the solutions (x,y) = (10,7)
and (595,73) of (2.1).

CASE 2 (¢ + 1). Itiseasy to see that the only case in which one may not be able to set
£ =1 in system (5.4) is when d = 3. In this case, one may assume that € = (1+1i+/3)/2
and that u = (a+i+/3b)/2 for some integers a and b such that a = b (mod2). Then
(5.4) becomes

25z = (M40) (A5 (185), (4
This equation is equivalent to
16z = a3 +3a’b—9ab* - 3b°. (5.15)
Assume first that both a and b are odd. Then, from (5.15), it follows that
16z = (a® —ab?) + (3a°b -3b3®) —8ab® = (a’>—b?)(a+3b) — 8ab®. (5.16)

Since a and b are both odd, we obtain that 16 | (a2 — b?)(a + 3b). Equation (5.16)
forces 16 | 8ab?, which is impossible.

Assume now that both a and b are even. Since y = (a/2)?+3(b/2)? is odd, it follows
that exactly one of the numbers a/2 and b /2 is even. Equation (5.15) now implies that

= (@) S G @O ) e

However, (5.17) is now impossible, because precisely one of the numbers a/2 and b /2
is even and the other one is odd. Hence, this case can never occur.
The theorem is therefore completely proved. O
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