

PYTHAGOREAN IDENTITY FOR POLYHARMONIC POLYNOMIALS

ALLAN FRYANT and MURALI KRISHNA VEMURI

Received 13 May 1999

Polyharmonic polynomials in n variables are shown to satisfy a Pythagorean identity on the unit hypersphere. Application is made to establish the convergence of series of polyharmonic polynomials.

2000 Mathematics Subject Classification: 31B99.

1. Introduction. Let L_n^k denote the vector space of real homogeneous polynomial solutions of degree k of Laplace's equation

$$\Delta u = 0, \quad (1.1)$$

where

$$\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \cdots + \frac{\partial^2}{\partial x_n^2}. \quad (1.2)$$

Such polynomials are called spherical harmonics. As shown in [9, pages 140-141],

$$\dim L_n^k = d_n^k = (n+k-2) \frac{(n+2k-3)!}{k!(n-2)!}. \quad (1.3)$$

Suppose that $\{\gamma_j^k(x)\}_{j=1}^{d_n^k}$ is an orthonormal basis for L_n^k , where orthonormality is with respect to the inner product

$$\langle f, g \rangle = \int_{\Sigma_1} f(x)g(x)dx \quad (1.4)$$

on the unit sphere $\Sigma_1 : x_1^2 + x_2^2 + \cdots + x_n^2 = 1$. It is well known (cf. [9, page 144]) that for all $s \in \Sigma_1$,

$$\sum_{j=1}^{d_n^k} [\gamma_j^k(s)]^2 = \omega_n d_n^k, \quad (1.5)$$

where ω_n is the surface area of the unit sphere Σ_1 in \mathbb{R}^n . We call (1.5) the Pythagorean identity for spherical harmonics, since it generalizes the Pythagorean theorem

$$\sin^2 \theta + \cos^2 \theta = 1. \quad (1.6)$$

Solutions of partial differential equation

$$\Delta^m u = 0, \quad (1.7)$$

where Δ is the Laplacian (1.2) and m is a positive integer, are called polyharmonic functions. In the case $m = 2$, such functions are called biharmonic and are used to model the bending of thin plates (for a brief history of this application, see [7, pages 416 and 432-443]).

We show here that homogeneous polyharmonic polynomials satisfy a Pythagorean identity on Σ_1 and use this identity to establish the convergence of polyharmonic polynomial series.

2. Pythagorean identity. Let J_n^k denote the vector space of real homogeneous polynomial solutions of the partial differential equation (1.7). Since Δ^m is a homogeneous differential operator of order $2m$, using a standard argument (cf. [5, Theorem 1]) we find that

$$\dim J_n^k = b_n^k = \binom{n-1+k}{k} - \binom{n-1+k-2m}{k-2m}. \quad (2.1)$$

In the vector space J_n^k , we introduce the Calderón inner product [1]

$$(p, q) = p\left(\frac{\partial}{\partial x}\right)q(x), \quad (2.2)$$

where

$$\frac{\partial}{\partial x} = \left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \dots, \frac{\partial}{\partial x_n} \right), \quad p\left(\frac{\partial}{\partial x}\right) = p\left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \dots, \frac{\partial}{\partial x_n}\right). \quad (2.3)$$

THEOREM 2.1. Suppose that $\{Q_k^j(x)\}_{j=1}^{b_n^k}$ is an orthonormal basis for the vector space J_n^k of homogeneous polyharmonic polynomials of degree k , where orthonormality is with respect to the inner product (2.2). Then for all $s = (s_1, s_2, \dots, s_n) \in \Sigma_1$, the unit sphere in \mathbb{R}^n ,

$$\sum_{j=1}^{b_n^k} [Q_k^j(s)]^2 = \gamma_n^k, \quad (2.4)$$

where γ_n^k is a constant depending only on n and k .

PROOF. A modification in the argument used for spherical harmonics suffices: fix a point $y \in \mathbb{R}^n$ and consider the linear functional $L: J_n^k \rightarrow \mathbb{R}$ defined by

$$L(p) = p(y). \quad (2.5)$$

Since J_n^k is a finite-dimensional inner product space, there exists a unique $Z_y \in J_n^k$ such that

$$L(p) = (p(x), Z_y(x)), \quad (2.6)$$

for all $p \in J_n^k$ (i.e., all finite-dimensional inner product spaces are self-dual). Further, since $\{Q_k^j(x)\}_{j=1}^{b_n^k}$ is an orthonormal basis for J_n^k ,

$$Z_y(x) = \sum_{j=1}^{b_n^k} (Z_y(x), Q_k^j(x)) Q_k^j(x). \quad (2.7)$$

But, by the defining property of Z_y ,

$$(Z_y(x), Q_k^j(x)) = Q_k^j(y). \quad (2.8)$$

Hence

$$Z_y(x) = \sum_{j=1}^{b_n^k} Q_k^j(y) Q_k^j(x). \quad (2.9)$$

Since the choice of $y \in \mathbb{R}^n$ was arbitrary, $Z_y(x)$ is a function of the two variables $x, y \in \mathbb{R}^n$; thus, we write

$$Z(x, y) = Z_y(x) = \sum_{j=1}^{b_n^k} Q_k^j(x) Q_k^j(y). \quad (2.10)$$

The Calderón inner product (2.2) is invariant with respect to rotations; that is, if $O : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is a rotation, then $(f(x), g(Ox)) = (f(O^{-1}x), g(x))$. Suppose $p(x) \in J_n^k$. Then

$$(p(x), Z(Ox, Oy)) = (p(O^{-1}x), Z(x, Oy)) = (q(x), Z(x, Oy)), \quad (2.11)$$

where $q(x) = p(O^{-1}x)$. Since rotations are invariant transformations for the Laplacian, it follows that $q(x) \in J_n^k$. Thus, by the defining property of $Z(x, y)$,

$$(q(x), Z(x, Oy)) = q(Oy). \quad (2.12)$$

But $q(Oy) = p(O^{-1}Oy) = p(y)$. Thus, we have shown that

$$(p(x), Z(Ox, Oy)) = p(y). \quad (2.13)$$

From the uniqueness of the representation of linear functionals, it follows that

$$Z(Ox, Oy) = Z(x, y), \quad (2.14)$$

for all $x, y \in \mathbb{R}^n$. In particular,

$$Z(Ox, Ox) = Z(x, x), \quad (2.15)$$

for every rotation O . Since every point on the unit sphere Σ_1 is the image under rotation for some fixed point on Σ_1 , the equality (2.15) implies that $Z(x, x)$ is constant on Σ_1 . That is,

$$\sum_{j=1}^{b_n^k} Q_k^j(s) Q_k^j(s) = C, \quad (2.16)$$

a constant, for all $s \in \Sigma_1$. □

3. Polyharmonic polynomial series. Pythagorean identities have been used to establish the convergence of series of spherical harmonics [4], as well as series of orthonormal homogeneous polynomials in several real variables in general [3]. We obtain here convergence for series of polyharmonic polynomials.

THEOREM 3.1. Suppose that $\{Q_k^j(x)\}_{j=1}^{b_n^k}$ are sets of orthonormal polyharmonic polynomials in \mathbb{R}^n of degree k , $k = 0, 1, 2, \dots$. Then the series

$$\sum_{k=0}^{\infty} \sum_{j=1}^{b_n^k} a_{kj} Q_k^j(x) \quad (3.1)$$

converges absolutely and uniformly on compact subsets of the open ball $|x| = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2} < R$, where

$$R^{-1} = \limsup_{k \rightarrow \infty} \left(\sqrt{\gamma_n^k} \|a_k\| \right)^{1/k}, \quad \|a_k\| = \left(\sum_{j=1}^{b_n^k} a_{kj}^2 \right)^{1/2}, \quad (3.2)$$

and γ_n^k is the Pythagorean constant appearing in (2.4).

PROOF. Since each of the polynomials Q_k^j is homogeneous of degree k , we have $Q_k^j(x) = r^k Q_k^j(x/r)$, where $r = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$. Thus

$$\begin{aligned} \left| \sum_{k=0}^{\infty} \sum_{j=1}^{b_n^k} a_{kj} Q_k^j(x) \right| &= \left| \sum_{k=0}^{\infty} r^k \sum_{j=1}^{b_n^k} a_{kj} Q_k^j\left(\frac{x}{r}\right) \right| \\ &\leq \sum_{k=0}^{\infty} r^k \left| \sum_{j=1}^{b_n^k} a_{kj} Q_k^j\left(\frac{x}{r}\right) \right|, \end{aligned} \quad (3.3)$$

by the Cauchy-Schwarz inequality

$$\left| \sum_{k=0}^{\infty} \sum_{j=1}^{b_n^k} a_{kj} Q_k^j(x) \right| \leq \sum_{k=0}^{\infty} r^k \left(\sum_{j=1}^{b_n^k} a_{kj}^2 \right)^{1/2} \left(\sum_{j=1}^{b_n^k} Q_k^j\left(\frac{x}{r}\right)^2 \right)^{1/2}. \quad (3.4)$$

Appealing now to the Pythagorean identity (2.4), we find that

$$\left| \sum_{k=0}^{\infty} \sum_{j=1}^{b_n^k} a_{kj} Q_k^j(x) \right| = \sum_{k=0}^{\infty} r^k \|a_k\| \sqrt{\gamma_n^k}, \quad (3.5)$$

from which the desired result is immediate. \square

Let H_n^k denote the vector space of homogeneous polynomials of degree k in \mathbb{R}^n . Since every orthonormal basis of J_n^k be extended to an orthonormal basis of H_n^k , it follows from [2, Theorem 3] that

$$\gamma_n^k \leq \frac{1}{k!}. \quad (3.6)$$

Thus,

$$R^{-1} = \limsup_{k \rightarrow \infty} \left(\sqrt{\gamma_n^k} \|a_k\| \right)^{1/k} \leq \limsup_{k \rightarrow \infty} \left(\frac{\|a_k\|}{\sqrt{k!}} \right)^{1/k} = \rho^{-1}, \quad (3.7)$$

and appealing to the result of [Theorem 3.1](#) we find that the polyharmonic polynomial series [\(3.1\)](#) converges absolutely and uniformly on compact subsets of the open ball $|x| < \rho$. We predict that the evaluation of the Pythagorean constant y_n^k will show that such convergence actually obtains within a somewhat larger ball.

In [\[11\]](#), it was shown that, in the space of homogeneous harmonic polynomials L_n^k , the Calderón inner product [\(2.2\)](#) is a constant multiple of the inner product [\(1.4\)](#). That is,

$$(p, q) = c_n^k \langle p, q \rangle, \quad (3.8)$$

for all $p, q \in L_n^k$, where c_n^k is a constant depending only on n and k . Thus, the Pythagorean identity for spherical harmonics [\(1.5\)](#) is a special case ($m = 1$) of the result of [Theorem 2.1](#).

The Pythagorean identity for spherical harmonics is also a special case of the addition formula for spherical harmonics [\[9, page 149\]](#) and [\[8, page 268\]](#). This leads us to conjecture that the homogeneous polyharmonic polynomials satisfy a similar addition formula, from which [Theorem 2.1](#) might follow as an immediate consequence. Such a development could include a significant generalization of the ultraspherical polynomials [\[6, 10\]](#).

REFERENCES

- [1] A. P. Calderón, *Integrales singulares y sus aplicaciones a ecuaciones diferenciales hiperbólicas [Singular Integrals and their Applications to Hyperbolic Differential Equations]*, Cursos y Seminarios de Matemática, Fasc. 3. Universidad de Buenos Aires, Buenos Aires, 1960 (Spanish).
- [2] A. Fryant, *Multinomial expansions and the Pythagorean theorem*, Proc. Amer. Math. Soc. **124** (1996), no. 7, 2001–2004.
- [3] A. Fryant, A. Naftalevich, and M. K. Vemuri, *Orthogonal homogeneous polynomials*, Adv. in Appl. Math. **22** (1999), no. 3, 371–379.
- [4] A. Fryant and H. Shankar, *Bounds on the maximum modulus of harmonic functions*, Math. Student **55** (1987), no. 2-4, 103–116 (1989).
- [5] A. Fryant and M. K. Vemuri, *Wave polynomials*, Tamkang J. Math. **28** (1997), no. 3, 205–209.
- [6] A. J. Fryant, *Ultraspherical expansions and pseudo analytic functions*, Pacific J. Math. **94** (1981), no. 1, 83–105.
- [7] V. Maz'ya and T. Shaposhnikova, *Jacques Hadamard, a Universal Mathematician*, History of Mathematics, vol. 14, American Mathematical Society, Rhode Island, 1998.
- [8] G. Sansone, *Orthogonal Functions*, Pure and Applied Mathematics, vol. 9, Interscience Publishers, New York, 1959.
- [9] E. M. Stein and G. Weiss, *Introduction to Fourier Analysis on Euclidean Spaces*, Princeton Mathematical Series, no. 32, Princeton University Press, New Jersey, 1971.
- [10] G. Szegő, *Orthogonal Polynomials*, 3rd ed., American Mathematical Society Colloquium Publications, vol. 23, American Mathematical Society, Rhode Island, 1967.
- [11] M. K. Vemuri, *A simple proof of Fryant's theorem*, SIAM J. Math. Anal. **26** (1995), no. 6, 1644–1646.

ALLAN FRYANT: 603F SIMPSON STREET, GREENSBORO, NC 27401, USA

MURALI KRISHNA VEMURI: DEPARTMENT OF MATHEMATICS, SYRACUSE UNIVERSITY, SYRACUSE, NY 13244, USA

E-mail address: mkvemuri@math.syr.edu

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk