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It is shown that the hypergeometric generalized negative binomial distribution has mo-
ments of all positive orders, is overdispersed, skewed to the right, and leptokurtic. Also,
a three-term recurrence relation for computing probabilities from the considered distri-
bution is given. Application of the distribution to entomological field data is given and its
goodness-of-fit is demonstrated.
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1. Introduction. A certain mixture distribution arises when all (or some) parame-
ters of a distribution vary according to some probability distribution, called the mixing
distribution. A well-known example of discrete-type mixture distribution is the neg-
ative binomial distribution which can be obtained as a Poisson mixture with gamma
mixing distribution.

Let X has a conditional Poisson distribution with parameter A, that is, X has a
conditional probability mass function (pmf)

AX
f(xlA)=P(X=x|A=A)=;e’A, x=0,1,...,A>0. (1.1)
Now suppose that A is a continuous random variable with probability density function

(pdf)

X (x+1)P 2

) APl (DA B (a:p;d), A>0, a,p,a>0, (1.2)

gA) =

where

e - (@) 2"
1\Fi(a;b;z) = gﬂ bl (1.3)

is the confluent hypergeometric function, also denoted by M (a, b, z), see Abramowitz
and Stegun [1]. Here, (a), denotes the Pochhammer’s symbol.:

(a)o=1, (a)p=ala+1)---(a+n-1), n=1,2,... (1.4)

and (a), =T(a+mn)/T(a) for a > 0 where I'(-) denotes the gamma function.
Bhattacharya [2] showed that the unconditional pmf of X, that is,

Flx)=P(X =x) = jo Flx 1 MgA)dA (L3)
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is given by

M (a+1)P(p)x
fx) = X!+ 2)X+p

1
zFl(a,xw;n;m), x=01,2,...,  (L6)

where

00

oFi(a,b;c;z) = >

n=0

(c)n nl (1.7

is the hypergeometric function, also denoted by F(a,b;c;z), see Abramowitz and
Stegun [1].

We use the notation HGNB(«x, a, p) to denote the hypergeometric generalized neg-
ative binomial distribution with pmf (1.6).

SPECIAL CASES. (i) If a = p, then, using [1, formula (15.1.8), page 556],
oFi(a,b;a;z) = oFy (b,a;a;2) = (1-2)7Y, (1.8)

withhb=x+aand z=1/(x+2), (1.6) reduces to

fix) = (“)X(Ly (1—L)x, x=0,1,2,... (1.9)

x! \ax+1 x+1

which is the pmf of negative binomial distribution with parameters a > 0 and success
probability 6 = «/(x+1) € (0,1).
(ii) If a = 2, p = 1, then, see the appendix, using the relation

2F1(2,lo;1;z)=(l—z)’b(l—zb_zl>, (1.10)

withhb=x+1and z=1/(x+?2), (1.6) reduces to

s X+ o+2
(o(+1)x+3'

f(x) =« x=0,1,2,... (1.11)

which is the pmf of Poisson-Lindley distribution with parameter « considered by
Sankaran [7].
(iii) If a = 1,p = 2, then, see the appendix, using the relation

1 —-(n+
Fn+22i2) = oo (-2 1], n=012,0, (112)

withn=xand z=1/(x+2), (1.6) reduces to

1 B 1
(x+1)X*+1 (x+2)x+1

f(x)=o<(o<+1)[ ], x=0,1,2,... (1.13)

which is the pmf of a generalized mixture of two geometric distributions with success
probabilities 61 = 1/(x+1) and 6, = 1/(x+ 2), respectively.
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The negative binomial distribution provides a more flexible alternative to the
Poisson distribution particularly when the variance of the data is significantly larger
than the mean. Johnson et al., [4, Chapter 5], provides a comprehensive survey of the
applications and generalizations/extensions of the negative binomial distributions.

The discrete Poisson-Lindley distribution was shown by Sankaran [7] to provide,
for particular data sets, better fit than other discrete distributions such as negative
binomial, Poisson and Hermite distributions. Yet, no attempt has been made to study
the properties of this distribution analytically.

The aim of this paper is to investigate some important properties of the hyperge-
ometric generalized negative binomial distribution. These include existence of mo-
ments as well as properties of statistical measures such as the index of dispersion,
skewness, and kurtosis. Also, a recurrence relation for calculating probabilities from
the considered distribution is given. Finally, the distribution is fitted to entomological
field data and its goodness-of-fit is demonstrated.

2. Moments and associated measures. We start this section by showing that the
HGNB distribution has moments of all positive orders.

THEOREM 2.1. For all x,a,p > 0, the HGNB(«x, a, p) distribution has moments of all
positive orders
. Pln
=E(X") = § e
Hy S(r,n) (o< +1)n

2F1<a -n;p;— ;) r=1,2,..., 2.1)
where S(v,n) are the Stirling numbers of the second kind
S(r,n) = Z( )( Di(n-1i)". (2.2)

PROOF. Since X | A = A has a Poisson distribution with parameter A, then
E[X(X-1)---(X—-n+1)|A=A]=A". (2.3)

Hence, the factorial moments of X, that is, ufn] =E[X(X-1)---(X—=n+1)], are given
by

Ui = E{E[X(X=1)- - (X—n+1) | A]} = E{A"}. (2.4)
Making use of the following integral, see Erdély [3],

JO et Fy (asciqt)dt = %25 (a,b;c: %) (2.3)

provided Reb,Res > 0, Res > Regq, |s| > |q|, we obtain

Xt (x+1)P 2
I'(p)

x*(p)n

R .
T (x+1ynra ! PP

E{A"} JO )\n+p le— (x+1)A 1F1(ap ?\)d?\

(2.6)
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Now using [1, formula (15.3.4), page 559]:

oFi(a,b;c;2) = (1-2) "2 F (a,cfb;C;sz), (2.7
withb=n+p,c=p,z=1/(x+1), and the definition of hypergeometric function,
respectively, we obtain

n

R AN () (@k(—n)y (=1/00k
zFl(a,fn,p, 0() = (0("‘1)",;) D)k Kl ,

(PIn
(x+1)n

Hin) = (2.8)
which is finite.

Finally, since S(r,n), n =0,1,...,7, are finite and u, = ZZL:OS(r,n)uEn], the theo-
rem follows. O

SPECIAL CASES. (i) If a = p, then, using (1.8) with b = —n and z = -1/«, (2.1)
reduces to

@)n

(2.9)
o(‘n

.
p=> Sr,n)
n=0

which is the »th moment of the negative binomial distribution with pmf (1.9).
(ii) If a = 2, p = 1, then, using (1.10) with b = —n and z = -1/, (2.1) reduces to

-
H}= ZS(r,n)n' n+o+1

— (2.10)
oo (x+1)axn
which is the »th moment of the Poisson-Lindley distribution with pmf (1.11).
(iii) If a = 1, p = 2, then, see the appendix, using the relation
n!
oF1(—n,1;2;z) = — [(1-2)"'-1], n=0,1,2,... (2.11)
(2)nz
with z = -1/, (2.1) reduces to
r x+1 P
! = | . S
. nZ::OS(T,n)n.[ o (o<+1)"] (2.12)

which is the »th moment of the generalized mixture of geometric distributions with
pmf (1.13).

THEOREM 2.2. For all a,p,x > 0, the HGNB(«x, a,p) distribution is overdispersed,
skewed to the right, and leptokurtic.

PROOF. The characteristic function of X ~ HGNB(«,a,p), see [2, page 28], is given
by

(1—(et —1)/(x+1))"7
(1—(eit—1)/0)"

Wx(t) = E{e’™} = , i=+-1, —co <t < oo, (2.13)

Using the cumulant generating function Kx (t) = In[yx (t) ], the ¥th cumulant of X is
givenby Kk, = i7" (d" /dt")Kx(0). Therefore, the first four cumulants of X, respectively,
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are given by

_a+px
= X (x+ 1)
B _ala+1)3—(a—p)o®(a+2)
2T o2 (ox+1)2 ’
(2.14)
_ala+ D) (x+2) = (a-p)od(a+2) (oe+3)
5= o3 (x+1)3 ’
B Cala+1)°[(x+3)°=3] - (a-p)at(x+2)[(x+4)? - 3]
T o4 (x+1)4 '

Recall that the index of dispersion (ID), skewness (v/B1), and kurtosis (82) of X,
respectively, are given by

K K K
=", Bi="2, B=3+23. (2.15)
K1 K3

=
N

It follows that

_ alx+1)3—(a—p)e(x+2)

b x(ax+1)(a+px)

> 1,

\/‘37: ala+ 1) (a+2)—(a—p)od(a+2)(x+3) ~0
' [a((x+1)37(a7p)0(2(0(+2)]3/2 ’ (2.16)

ala+1)°[(x+3)2=3]-(a-p)a*(x+2)[(x+4)%—3]
[a(a+1)3 - (a-p)ed(a+2)]?

B2=3+ >3,

proving the theorem. ]

REMARKS. (i) If a = p, the index of dispersion does not depend on a while the
skewness and kurtosis depend on a.

(ii) Expressions for the index of dispersion, skewness and kurtosis for the negative
binomial distribution with pmf (1.9), Poisson-Lindley with pmf (1.11) and generalized
mixture of geometric distributions with pmf (1.13), respectively, are obtained when
(a,p) = (a,a),(2,1),(1,2).

Figures 3.1, 3.2, and 3.3, respectively, show the index of dispersion, skewness, and
kurtosis of the HGNB(1,a,p) distribution for selected values of a and p.

3. Recurrence relation. The following theorem provides a recurrence relation for
calculating probabilities.

THEOREM 3.1. For all x,a,p > 0, the HGNB(«x, a,p) distribution satisfies the recur-
rence relation

a+x+p+x—a>f(x)_

x+1 x+2

p+x—1
(x+1)(x+2)

(x+1)f(x+1)=( flx-1), (3.1

where

f(=1)=0,  £(0)= (L>a<“—“>w. 3.2)

x+1 x+2
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Index of dispersion

FIGURE 3.1. The index of dispersion of the HGNB(«, a, p) distribution when
(a,p) = (a,a) (-), (1,2) (--+), (2,1) (==—).

2.9+

Skewness

FIGURE 3.2. The coefficient of skewness of the HGNB(«,a,p) distribution
when (a,p) = (1,1) (=), (1,2) (---), (2,1) (==-), (2,2) (=.—).

Kurtosis

FIGURE 3.3. The coefficient of kurtosis of the HGNB(«,a,p) distribution
when (a,p) = (1,1) (=), (1,2) (--+), (2,1) (==-), (2,2) (=.—).
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PROOF. Using [1, formula (15.2.11), page 558]:

(c=b),Fi(a,b-1;c;z)+(2b—c—bz+az)Fy(a,b;c;z)+b(z-1)F,(a,b+1;c;z)=0.

(3.3)
Hence, for b = p + x, c = p and z # 1, we obtain
a+x
(n+X)zF1(a,p+X+1;v;Z):< +v+x—a)zF1(a,p+x;p;z)
1-z
(3.4)
-1z 2@p+x-1p;z).
Rewrite f(x), given by (1.6), as
fx)=vx)Fi(a,p+x;p5y), x=0,1,2,..., (3.5)
where
_a (P)xy™ 1
—(1=2y)3(] —y)P-a2xy -
v(x)=(1-2y)"(1-y) xl Y xi2 (3.6)
It follows that
B a p—-a
r = (S + 22 p0), 3.7)
Using the relations
x+1 Sp+x—1
—v(x+1l)=yv(x) =y ——v(x-1), x=1,2,... (3.8)
p+x
and (3.4), (3.5), and (3.6), we obtain, for x =1,2,...,
(x+1D)f(x+1)=(x+1)v(x+1)F(a,p+x+1;p;y)
a+x
=(l_y+v+x—a>yv(x)zF1(a,p+x;v;y)
y2 (3.9)
—m(er—l)v(x—l)zFl(a,n+X—1;p;y)
7(“+X+ +x—a> Fo -2 (prx-1)fx—1)
“\1oy p Y l_yl’ .
Sincey=1/(x+2)and 1 -y = (x+1)/(x+2), the theorem is proved. O

Table 4.1 shows the values of f(x) of HGNB(1,a,p) using the above recurrence
relation when (a,p) = (1,1),(1,2),(2,1),(2,2).

4. Application. Table 4.2 shows the frequency distribution of European corn borer
larvae Pyrausta nubilalis (Hnb.) in field corn, reported by McGuire et al. [5]. They
showed that this frequency distribution is best fitted by the negative binomial distri-
bution as compared to Neyman type A distribution and Poisson binomial distribution.
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TABLE 4.1. Calculating f(x) of HGNB(1,a,p) using the recurrence relation (3.1).

f(x)
(a,p) = (1,1) (1,2) (2,1) (2,2)
0 0.500000 0.333333 0.375000 0.250000
1 0.250000 0.277778 0.250000 0.187500
2 0.125000 0.175926 0.156250 0.125000
3 0.062500 0.100309 0.093750 0.078125
4 0.031250 0.054270 0.054688 0.046875
5 0.015625 0.028565 0.031250 0.027344
6 0.007813 0.014711 0.017578 0.015625
7 0.003906 0.007508 0.009766 0.008789
8 0.001953 0.003805 0.005371 0.004883
9 0.000977 0.001919 0.002930 0.002686
10 0.000488 0.000965 0.001587 0.001465

In the following, the HGNB(«, a,p) distribution is fitted to this data. The method
of moments estimators of «, a, p, respectively, are given by & = 5.550266 x 1074,
a=28.46876x1078 p =5.2342.

In calculating the chi-square statistic x = >~ (0; — e;)%/e;, where 0;(e;) are the
observed (expected) frequencies, m = 13 after combining the observed (expected)
frequencies corresponding to counts 12 to 25, as did McGuire et al. [5], thatis, 013 = 15
and e;3 = 14.87(14.55) for NB (HGNB). Also, the degrees of freedom are given by
m—t—1 where t = 2(3) is the number of estimated parameters for NB (HGNB).

From Table 4.2, we observe that fitting the HGNB distribution gives an improvement
over fitting the NB distribution as judged by the chi-square value.

Appendix. In the following, we make use of the following well-known relations of
hypergeometric functions:

zFl(a,b;C;Z)=(1—2)’sz1(C—a,b;C;Zi1>. (A.1)
(see [1, formula (15.3.5), page 559])
o ml(z-1m2 . ’”‘z(n+1)k( z )k
2P Limiz) = == s [(1 2) go o \so1) | e
where n =0,1,2,..., m = 1,2,..., and for m = 1 the sum on the right-hand side is 0

(see [6, formula (179), page 466]).

PROOF OF (1.10). Using (A.1) with a = 2, ¢ = 1, and the definition of the hypergeo-
metric function, respectively, we obtain
bz

Fi(2,h;1;2) = (1-2) " zFl(—l,b;l;Z%l) - (l—z)‘b<1—zj). (A.3)



ON HYPERGEOMETRIC GENERALIZED NEGATIVE BINOMIAL ... 735

TABLE 4.2. Fitting negative binomial (NB) and hypergeometric generalized
negative binomial (HGNB) distributions to the frequency distribution of Eu-
ropean corn borer larvae Pyrausta nubilalis (Hnb.) in field corn.

Count per plot  Observed frequency Expected frequency
Xi 0 e
NB HGNB
0 10 8.92 8.62
1 18 22.96 22.54
2 39 35.37 35.14
3 33 42.32 42.36
4 42 43.34 43.59
5 56 39.92 40.24
6 36 34.01 34.31
7 26 27.31 27.52
8 19 20.92 21.04
9 19 15.42 15.46
10 7 11.02 11.00
11 4 7.66 7.62
12 4 5.21 5.15
13 4 3.47 3.41
14 2 2.27 2.22
15 1 1.47 1.42
16 2 0.94 0.90
17 1 0.59 0.56
18 0 0.20 0.35
19 0 0.12 0.21
20 0 0.08 0.13
21 0 0.05 0.08
22 0 0.03 0.05
23 0 0.02 0.03
24 0 0.01 0.02
25 1 0.41 0.02
Total 324 324 324
X2 14.55 14.23
df 10 9
P-value 0.149 0.114

PROOF OF (1.12). Using (A.1) witha=n+2,b =1, c = 2, and (A.2) with m = 2,
respectively, we obtain

oF1(1,n+2;2;z) =2Fi(n+2,1;2;z)

= (1—2)*12F1<—n,1;2;i)
z—1
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=(1-2)7 (n+1)(;}(z—l)) [(1_zil)n+1_l]

_ 1 (1) _

B (n+1)z[(1 2) 1].
(A.4)
O

PROOF OF (2.11). Using (A.2) with m = 2, we obtain

n!
2Fi1(-n,1;2;z) = - [(1-z)"*t—1]. (A.5)
(2)nz
[
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