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We give a geometric formulation of the field equations in the Lagrangian and Hamiltonian
formalisms of classical field theories (of first order) in terms of multivector fields. This
formulation enables us to discuss the existence and nonuniqueness of solutions of these
equations, as well as their integrability.
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1. Introduction. In recent years, there have been new developments in the study
of multisymplectic Hamiltonian systems [2] and, in particular, their application to de-
scribe field theories. In this study, multivector fields and their contraction with differ-
ential forms are used; this is an intrinsic formulation of the systems of partial differ-
ential equations locally describing the field. Thus, the integrability of such equations,
that is, of multivector fields, is a matter of interest. Given a fiber bundle 7w : E — M,
certain integrable multivector fields in E are equivalent to integrable connections in
E — M [8]. This result is applied in two particular situations:

e first, multivector fields in J1E (the first-order jet bundle), in order to character-
ize integrable multivector fields whose integral manifolds are holonomic;

e second, the manifold J'*E = AT"T*E/AJ'T*E (where AI"T*E is the bundle
of m-forms on E vanishing by the action of two rr-vertical vector fields, and
AJ'T*E = ¥ A™T* M), which is also a fiber bundle J'*E — M. Then, we will take
multivector fields in J'*E in order to characterize those that are integrable.

From these results we can set the Lagrangian and Hamiltonian equations for mul-
tisymplectic models of first-order classical field theories in a geometrical way [3, 12,
14, 15, 18], in terms of multivector fields; which is equivalent to other formulations
using Ehresmann connections in a jet bundle [4, 21], or their associated jet fields [7].
This formulation allows us to discuss several aspects of these equations, in particu-
lar, the existence and nonuniqueness of solutions. (In a recent work [19], an extended
Hamiltonian formalism for field theories was proposed, but using multivector fields in
AT'T*E instead of J'*E. See also [16, 17], where multivector fields are used in another
more specific context.)

In Section 2, we introduce the terminology and nomenclature concerning multivec-
tor fields in differentiable manifolds and fiber bundles. This is used in Section 3 for
setting the field equations for Lagrangian field theories (of first-order) in terms of
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multivector fields, and for analyzing their characteristic features. Finally, the same
study is carried out in Section 4 for Hamiltonian field theories.

Throughout this paper, m: E — M denotes a fiber bundle (dimM = m, dimE =
N +m), where M is an oriented manifold with volume form w € Q™ (M). We denote
by 1! : J'E — E the jet bundle of local sections of 71, and 7wl = wom!: JIE - M
gives another fiber bundle structure. And (x*, y4, vﬁ) denote natural local systems
of coordinates in J'E, adapted to the bundle E = M (u =1,...,m; A =1,...,N), such
that w = dx! A -+ Adx™ = d™x. Manifolds are real, paracompact, connected, and
C>. Maps are C*. The sum over crossed repeated indices is understood.

2. Multivector fields in differentiable manifolds. Let E be an n-dimensional dif-
ferentiable manifold. Sections of A™(TE) are called m-multivector fields in E (they are
contravariant skewsymmetric tensors of order m in E). Then, contraction with multi-
vector fields is the usual one for tensor fields in J'*E. We denote by ¥™ (E) the set of
m-multivector fields in E.

If Y € X™(E), for every p € E, there exists an open neighborhood Up C E and
Y1,...,Yy € %(Up) such that Y Sicij<rocimer SUTMY A2 AYy,, with fi1im e
C*(Up) and m <7 < dimE. Then Y € X™(E) is said to be locally decomposable if, for
every p € E, there exists an open neighborhood U, C E and Yi,...,Y,;, € X¥(U,) such
that Y YiA---AYy.

A nonvamshmg m-multivector field Y € X" (E) and an m-dimensional distribution
D c TE are locally associated if there exists a connected open set U < E such that Y|y
is a section of A"™D|y. If Y,Y’ € X™(E) are nonvanishing multivector fields locally
associated with the same distribution D, on the same connected open set U, then
there exists a nonvanishing function f € C*(U) such that Y’ £ fY. This fact defines
an equivalence relation in the set of nonvanishing m-multivector fields in E, whose
equivalence classes are denoted by {Y}y. We have as a consequence the following
theorem.

THEOREM 2.1. There is a one-to-one correspondence between the set of m-
dimensional orientable distributions D in TE and the set of the equivalence classes
{Y'}r of nonvanishing, locally decomposable m-multivector fields in E.

PROOF. Let w € Q" (E) be an orientation form for D. If p € E, there exists an
open neighborhood U, C E and Yi,...,Ym € X(Up), with i(Y1 A+ - - A Yy )w > 0, such
that DIUp = span{Yi,...,Y,}. Then Y1 A - - - A Y,, is a representative of a class of m-
multivector fields associated with D in U,. But the family {U,; p € E} is a covering
of E; let {Uy; «x € A} be a locally finite refinement and {p,; « € A} a subordinate
partition of unity. If Y[¥,..., Y% is a local basis of D in Uy, with i(Y*A -+ - AYS)w > 0,
then Y = > pa Y A --- AYS is a global representative of the class of nonvanishing
m-multivector fields associated with D in E.

The converse is trivial because, if Y|y = Y} A--- A Y)Y, = YZA--- A Y2, for different
sets {Y{,...,Y}}, {Y2,...,,Y2}, then span{Y/,...,YL} = span{Y?,..., Y2 }. O
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If Y € X™(E) is nonvanishing and locally decomposable and U < E is a connected
open set, then the distribution associated with the class {Y'}y is denoted by @y (Y). If
U = E, we write 9(Y).

A nonvanishing, locally decomposable multivector field Y € X™ (E) is said to be
integrable (resp., involutive) if its associated distribution %y (Y) is integrable (resp.,
involutive). Of course, if Y € X™(E) is integrable (resp., involutive), then so is every
other multivector field in its equivalence class {Y}, and all of them have the same
integral manifolds. Moreover, Frobenius theorem allows us to say that a nonvanishing
and locally decomposable multivector field is integrable if and only if it is involutive.
Nevertheless, in many applications, we have locally decomposable multivector fields
Y € X™(E) which are not integrable in E, but integrable in a submanifold of E. An
(local) algorithm for finding this submanifold has been developed [8].

The particular situation to which we will pay attention is the study of multivector
fields in fiber bundles. If 77 : E — M is a fiber bundle, we will be interested in the case
where the integral manifolds of integrable multivector fields in E are sections of 1.
Thus, Y € X™(E) is said to be 1r-transversefif, at every point y € E, (i(Y)(1m*w)), = 0,
for every w € Q™ (M) with w (1t (y)) = 0.If Y € ¥™(E) is integrable, it is 7r-transverse
if and only if its integral manifolds are local sections of 1T : E — M. In this case, if
¢ :U C M — E is alocal section with ¢p(x) = v and ¢ (U) is the integral manifold of
Y through vy, then T, (Im¢) is %,,(Y).

3. Lagrangian equations in classical field theories. A classical field theory is de-
scribed by its configuration bundle 1 : E — M and a Lagrangian density which is a 7r!-
semibasic m-form on J'E. A Lagrangian density is usually written as £ = £t w),
where £ € C*(J'E) is the Lagrangian function associated with £ and w.

The Poincaré-Cartan m and (m + 1)-forms associated with the Lagrangian density
< are defined using the vertical endomorphism V' of the bundle J'E:

Oy :=i(VL+L e Q™ (J'E);
(3.1)
Qg = —dBy € Q" (J'E).
Then a Lagrangian system is a couple (J'E,Qg). The Lagrangian system is regular if
Qg is 1-nondegenerate. In a natural chart in J'E we have

0°f B A -1 0°f B A -1
Qggz—mdvv/\dy Ad™ X“—Wdy Ady Ad™ Xy
22 32 2 a2 2
0 g B gmyy [ 97E 4 OF £ B, gm
+av§avﬁ‘v“dv"/\d x+<ay38vﬁ‘v“ 3y8 " axnaut dy® nd"x,

where d™ !'x, = i(0/0x*)d™x; and the regularity condition is equivalent to
det((32£/0v,0vE) (7)) # 0, for every y € J'E.

A variational problem can be stated for (J1E, Q) (Hamilton principle): the states of
the field are the sections of 1t (denoted by I'(M, E)) which are critical for the functional
L:T(M,E) — R defined by L(¢) := [,,(j'$p)*&Z, for every ¢p € I'(M,E). These critical
sections can be characterized by the condition

(') i(X)Qy =0, VX eX(J'E). (3.3)
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In natural coordinates, if ¢ = (x*, y*(x)), this condition is equivalent to demanding
that the components of ¢ satisfy the Euler-Lagrange equations,

o _ 9 of =0, (forA=1,...,N). (3.4)
oyAljng oxH vy ljig
(For a more detailed description of all these concepts cf. [1, 3, 7, 11, 12, 13, 20, 21]).
The problem of finding these critical sections can be formulated equivalently as
follows: to find a distribution D of T(J'E) satisfying the conditions:
e D is integrable (i.e., involutive);
e D is m-dimensional;
e D is 1rl-transverse;
e the integral manifolds of D are the critical sections of the Hamilton principle.
From the first and second conditions, there exist X1, ..., X;, € X(J'E) (ininvolution),
which locally span D. Therefore X = X; A -+ - A X, defines a section of AT (J'E),
that is, a nonvanishing, locally decomposable multivector field in J'E, whose local
expression in natural coordinates is

0 0
= /\ (W +F;148_’)/7A +Gﬁpav ) (3.5)

where f is a nonvanishing function. A representative of the class {X} can be selected
by the condition i(X)(7t!*w) = 1 which leads to f = 1. Furthermore, the third and
fourth conditions impose that X is 77! -transverse, integrable and its integral manifolds
are holonomic sections of 7r!.

Bearing this in mind, we want to characterize the integrable multivector fields in
J'E whose integral manifolds are canonical prolongations of the sections of . So,
consider the vector bundle projection k : TJ'E — TE defined by

K(¥,1) = TP (Tytt (@), (¥,m) € TJ'E, ¢ € y. (3.6)

This projection is extended in a natural way to A"k : A"™TJ'E — A™TE. Then, a 7r!-
transverse multivector field X € X¥™(J'F) is said to be semiholonomic, or a second-
order partial differential equation, if A"k oX = A™TTr! o X. In a natural chart in J'E,
the local expression of X is

m d 2
= vA A _ Y
- /:\ (axu vigea +Gupav5,), (3.7)

where f € C*(J'E) is an arbitrary nonvanishing function. On the other hand, X €
X™(JYE) is said to be holonomic if it is integrable, 7r!-transverse and its integral sec-
tions ¢ : M — J'E are holonomic. Then, it can be proved [8] that a multivector field
X € ¥™(J'E) is holonomic if and only if it is integrable and semiholonomic.

Of course, if X € ¥X™(J'E) is a semiholonomic (resp., holonomic) multivector field,
then all those in the class {X} ¢ ¥™(J'E) are semiholonomic (resp., holonomic) too.
As alocal expression of a representative we can take

X-K(i o G, (3.8)
- \ \ox# “ayA+ HPdu ’
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Given a section ¢ = (xH, f4),if jl¢p = (xH, fA,0f4/0xP) is an integral section of this
semiholonomic multivector field, then v[} =0f4/0x* and the components of ¢ are a
solution to the system of partial differential equations,

( ) afA):aazifA. (3.9)

OxH XPOxV

On the other hand, it can be proved [8] that classes of locally decomposable and 7r!-
transverse multivector fields are in one-to-one correspondence with orientable con-
nections in the bundle 1r: J1E — M (this correspondence is characterized by the fact
that 9(X) is the horizontal subbundle of the connection). For the multivector field
(3.8), the associated Ehresmann connection has the local expression

V:dx“®< 9

0 0
A A
Ik + u—ayAJrG —) (3.10)

Hp avé

Then X € ¥™(J'E) is integrable if and only if the connection V associated with the
class {X} is flat, that is, the curvature of V vanishes everywhere. Thus, system (3.9)
has a solution if and only if the following additional system of equations holds (for
every B, u, p, n)

0=G%, -Gk,
3.11
o= Gho | a0Gh, ., 0Gh, 0Gh,  ,0Gh, ., 3G, (3.11)
oxH  THoyA TR gy axn T oyA T gy

Now, the problem posed by the Hamilton principle can be stated in the follow-
ing way:

THEOREM 3.1. Let (J'E,Qg) be a Lagrangian system. The critical sections of the
Lagrangian variational problem are the integral sections of a class of holonomic mul-
tivector fields { Xy} C X™(J E), such that

PROOF. The critical sections must be the integral sections of a class of holonomic
multivector fields {X¢} C ¥™(J'E), as a consequence of the above discussion.

Now, using the local expression (3.2) of Qg, and taking (3.8) as the representative of
the class of semiholonomic multivector fields {X¢}, from the relation i(X¢)Qg = 0 we
have that the coefficients on dv dy4, and dx* must vanish. But for the coefficients
on dv;}, we obtain the 1dent1t1es

2
0:(1}3 UB)ava a£v VA,V: (3.13)
u

meanwhile the condition for the coefficients on dy# leads to the system of equations

S VRN ST
vBavld TVH T oyA axkovf dyBovi ¢

A=1,...,N. (3.14)
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Therefore if j'¢p = (x#, f4,0f4/0x”) must be an integral section of Xy, then v} =
0f4/0x*, and hence the coefficients G’ju must satisfy (3.9). As a consequence, system
(3.14) is equivalent to the Euler-Lagrange equations for the section ¢. Note that, from
the above conditions, the coefficients on dx* vanish identically. O

So, in Lagrangian field theories, we search for (classes of) nonvanishing and locally
decomposable multivector fields X¢ € X¥™(J'E) such that

(1) the equation i(X¢)Q¢ = 0 holds;

(2) Xy are semiholonomic;

(3) Xy are integrable.

Then we introduce the following nomenclature:

DEFINITION 3.2. X¢ € X™(J'F) is said to be an Euler-Lagrange multivector field
for & if it is semiholonomic and is a solution to the equation i(X¢)Qg = 0.

Observe that neither the compatibility of system (3.14) nor the integrability of (3.9)
are assured. Thus, the existence of Euler-Lagrange multivector fields is not guaranteed
in general, and if they exist, they are not necessarily integrable.

THEOREM 3.3 (existence and local multiplicity of Euler-Lagrange multivector fields).
Let (JYE, Q) be a regular Lagrangian system. Then
(1) there exist classes of Euler-Lagrange multivector fields for &£;
(2) in a local system, these multivector fields depend on N(m? —1) arbitrary func-
tions.

PROOF. (1) First we analyze the local existence of solutions and then their global
extension.

In a chart of natural coordinates in J'E, using the local expression (3.2) of Q4 and
taking the multivector field given in (3.5) (with f = 1) as the representative of the class
{X¢}, from the relation i(X¢)Qg¢ = 0, we have that the coefficients on dvﬁ‘, dy4, and
dx* must vanish.

Thus, for the coefficients on dv[,‘, we obtain that

0%f
ovitovt
But if & is regular, the matrix (9°£/0v;'dv)) is regular. Therefore Ff = v} (for every
B, p) which proves that if Xy exists it is semiholonomic.

Subsequently, from the condition for the coefficients on dy4, and taking into ac-
count that we have obtained Fﬁ = v}f , we obtain the set of (3.14), which is a system of
N linear equations on the functions G2 - This is a compatible system as a consequence
of the regularity of &, since the matrix of the coefficients has a (constant) rank equal
to N (observe that the matrix of this system is obtained as a rearrangement of rows
of the Hessian matrix).

From the above results, we obtain that the coefficients on dx* vanish identically.
From these results, we are able to assure the local existence of (classes of) multivector
fields satisfying the desired conditions. The corresponding global solutions are then
obtained using a partition of unity subordinated to a covering of J'EF made of local
natural charts.

0=(FE-vE) VA,v. (3.15)
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(2) The expression of a semiholonomic multivector field Xy € {X¢} is given by (3.8).
So, it is determined by the Nm? coefficients G{fu, which are related by the N indepen-
dent equations (3.14). Therefore, there are N (m? — 1) arbitrary functions. O

Now the problem is to find a class of integrable Euler-Lagrange multivector fields,
if indeed it exists. Thus, we can choose, from the solutions to this system, those such
that Xy verify the integrability condition, that is, the associated connection Vy is flat
(3.11). If (3.14) and the first group of (3.11) allow us to isolate N + (1/2)Nm(m —1)
coefficients Gf}v as functions on the remaining ones; and the set of (1/2)Nm?2(m—1)
partial differential equations (the second group of (3.11)) on these remaining coeffi-
cients satisfies the conditions on Cauchy-Kowalewska'’s theorem [6], then the existence
of integrable Euler-Lagrange multivector fields is assured.

REMARK 3.4 (singular Lagrangian systems). For singular Lagrangian systems, the
existence of Euler-Lagrange multivector fields is not assured except perhaps on some
submanifold S — J'E. Furthermore, locally decomposable and 7r!-transverse multi-
vector fields, which are solutions of the field equations, can exist (in general, on some
submanifold of J'E), but none of them is semiholonomic (at any point of this subman-
ifold). As in the regular case, although Euler-Lagrange multivector fields exist on some
submanifold S, their integrability is not assured except perhaps on another smaller
submanifold I - S; such that the integral sections are contained in I. This condition
implies that 7t!|; : I — M must be onto on M.

The local treatment of the singular case is as follows: starting from (3.5), and taking
the representative obtained by making f,, = 1, for every u, we can impose the semi-
holonomic condition by making Fﬁ‘ = v;‘, for every A, u. Therefore, we have system
(3.14) for the coefficients G{}v; but this system is not compatible in general except
perhaps in a set of points S; C J'E, which is assumed to be a nonempty closed sub-
manifold. Then, there are Euler-Lagrange multivector fields on S;, but the number
of arbitrary functions on which they depend is not the same as in the regular case,
since this number depends on the dimension of S; and the rank of the Hessian ma-
trix of £. Next, the tangency condition must be analyzed; and finally the question of
integrability must be considered as above, but for a submanifold of S;.

4. Hamiltonian equations in classical field theories. For the Hamiltonian formal-
ism of field theories, the choice of a multimomentum phase space or multimomentum
bundle is not unique (see [10]). In this work we take
ATT*E
gzl — 4.1
d AJ'T*E @1
where AT*T*E is the bundle of m-forms on E vanishing by the action of two m-vertical
vector fields, and AJ'T*E = m*A™T*M. We have the natural projections

T':J"E—E,
4.2)
Tl=mot!: J™E—M
and we denote by (x#, y4, p!}) the natural local systems of coordinates in J!* F adapted
to these bundle structures (u=1,...,m; A=1,...,N).
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For constructing Hamiltonian systems, J!*F must be endowed with a geometric
structure. There are different ways for doing this, namely, using Hamiltonian sections
[3], or Hamiltonian densities [3, 10, 12]. So we construct the Hamilton-Cartan m and
(m+1) forms 0, € Q™(J*E) and Qj = —dO;, € Q™ (J1*E), which have the local
expressions (in an open set U C J*E):

Op = phdy* Ad™ 'x, —Hd"x,
(4.3)
Qp = —dpindy Ad™ 'x, +dH Ad™x.

H € C>*(U) is a local Hamiltonian function, which is given by a Hamiltonian section
h:JYE — AT"T*E as follows: if (x“,yA,pf\,p) denotes a natural system of adapted
coordinates in A*'T*E, then h(x%,v4,p%) = (x*,»4,p%,—H). A couple (J'*E,Qp) is
said to be a Hamiltonian system.

We can state a variational problem for (J'*E, Q) (Hamilton-Jacobi principle): the
states of the field are the sections of 7! which are critical for the functional H(y) :=
i W* Oy, for every ¢ € I'(M,J'*E). They are characterized by the condition [3, 10]

YriX)Qpn=0 VXecX%(JVE). (4.4)
In natural coordinates, if @ (x) = (x*, ¥ (x), p' (x)), this condition leads to the system

_oH

OH oph
aph

oxH

~OH

Chl _oH
-3

Ixch , (4.5)

@

@

v Y

which is known as the Hamilton-De Donder-Weyl equations.

Let (J'*E,Qp) be a Hamiltonian system. The problem of finding critical sections
solutions of the Hamilton-Jacobi principle can be formulated equivalently as follows:
to find a distribution D of T (J'*E) satisfying the conditions:

e D is integrable (i.e., involutive);

e D is m-dimensional,

e D is T!-transverse.

e The integral manifolds of D are the critical sections of the Hamilton-Jacobi
principle.

Then, from the first and the second conditions, there exist X1,...,X;n € X(J'*E) (in
involution), which locally span D. Therefore X = Xj A - - - A X, defines a section of
A™T(JY*E), that is, a nonvanishing, locally decomposable multivector field in J1*E,
whose local expression in natural coordinates is

X= 7[\f(1+FAi+GP i) (4.6)
Loy Nk T gy A TR ) '

where f € C*(J'*E) is a nonvanishing function. A representative of the class {X} can
be selected by the condition i(X)(T'*w) = 1 which leads to f = 1.

Therefore, the problem posed by the Hamilton-Jacobi principle can be stated in the
following way:



A GEOMETRICAL ANALYSIS OF THE FIELD EQUATIONS ... 695

THEOREM 4.1. The critical sections of the Hamilton-Jacobi principle are the sections
@ € TI.(M,J*E) such that they are the integral sections of a class of integrable and
Tl-transverse multivector fields { Xy} C X™(JV*E) satisfying

i(Xe)Qn =0 VXy € { Xy} 4.7)

PROOF. The critical sections must be the integral sections of a class of integrable
and T!-transverse multivector fields {Xs} C ¥™(J*E), as a consequence of the above
discussion.

Now, using the local expression (4.3) of Q) and taking the multivector field (4.6)
(with f = 1) as a representative of the class {Xy}, from i(Xy)Qpn = 0 we obtain that
the coefficients on dp’, must vanish:

oH
opXx

0=F}- VA,v; (4.8)

and the same happens for the coefficients on dy:

o0H

OZGZ“JFBJ/iA

A=1,...,N. (4.9)

(Using these results, the coefficients on dx* vanish identically.)
Now, if @ (x) = (x“,yA(x"),lﬂf;(x")) has to be an integral section of Xy then

oy oph

Agy = —2— B = ——FA.

Floy ox,” Ghyow =—310 (4.10)
and (4.8) and (4.9) are the Hamilton-De Donder-Weyl equations (4.5) for . O

Thus, we search for (classes of) T!-transverse and locally decomposable multivector
fields Xy € X™(J'*E) such that

(1) i(X3)Qpn = 0 holds;

(2) Xy are integrable.

Classes of locally decomposable and 7!-transverse multivector fields are in one-
to-one correspondence with connections in the bundle 7! : J1*E — M. Then Xy is
integrable if and only if the curvature of the connection associated with this class
vanishes everywhere.

DEFINITION 4.2. A multivector field X € X™ (J'*E) will be called a Hamilton-De
Donder-Weyl (HDW) multivector field for the system (J'*E,Qy,) if it is T!-transverse,
locally decomposable and verifies the equation i(Xs)Qp = 0.

For a Hamiltonian system, the existence of Hamilton-De Donder-Weyl multivector
fields is guaranteed, although they are not necessarily integrable.

THEOREM 4.3 (existence and local multiplicity of HDW-multivector fields). Let
(JY*E,Qp) be a Hamiltonian system. Then

(1) there exist classes of HDW-multivector fields {Xs};

(2) in a local system, the above solutions depend on N(m? — 1) arbitrary functions.

PROOF. (1) Bearing in mind the proof of Theorem 4.1, we have that (4.8) makes a
system of Nm linear equations which determines univocally the functions F;', while
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(4.9) is a compatible system of N linear equations on the Nm? functions G4, . These
results assure the local existence. The global solutions are obtained using a partition
of unity subordinated to a covering of J!*E made of natural charts.

(2) In natural coordinates in J'*E, a representative of a class of HDW-multivector
fields Xy € {Xy} is given by (4.6) (with f = 1). Therefore, it is determined by the
Nm coefficients F\i‘, which are obtained as the solution to (4.8), and by the Nm?
coefficients Gi‘w, which are related by the N independent equations (4.9). Therefore,
there are N(m? —1) arbitrary functions. O

In order to find a class of integrable HDW-multivector fields (if it exists) we must
impose that Xy verify the integrability condition: the curvature of the associated con-
nection Vg vanishes everywhere, that is, the following system of equations holds (for
l<su<n<m)

O:ﬁ Aﬁ G ﬁ_ﬁ_ Aﬁ_GPﬂ
dxH THoyA T TAGpY 9xn M gyA TATGph
®H  oH °H 32H °H
= +—x +G% - 4.11
dx#dpy  oph oyAdpy  Maplopy 0xndpj 1y
_OH ®*H ., ®H
opi dyAopy  Mophopy’
0 oGy, +FAan;,7 Lo 0Gh, 0Gh, .,0Gg, ., 9Gg,
oxH M ayA T UM apY axn TN ayA AT gp) “12)
1

090Gy, . 0H 3Gy,

) 3Gh, 0Gh, oH 3Gh, ., 9Gh,

= + + — _
oxH  aph oyA T M apk  oxn aph oyA A ap)”

(where use is made of the Hamiltonian equations). Hence the number of arbitrary
functions will be in general less than N (m? —1).

As this is a system of partial differential equations with linear restrictions, there is
no way of assuring the existence of an integrable solution. Considering the Hamilton-
ian equation (4.9) for the coefficients G4, together with the integrability conditions
(4.11) and (4.12), we have N + (1/2)Nm (m —1) linear equations and (1/2)Nm?(m—1)
partial differential equations. Then, if the set of linear restrictions (4.9) and (4.11) al-
low us to isolate N+ (1/2)Nm(m —1) coefficients Gﬁv as functions on the remaining
ones; and the set of (1/2)Nm?2(m — 1) partial differential equations (4.12) on these
remaining coefficients satisfies certain conditions, then the existence of integrable
HDW-multivector fields (in J'*E) is assured. If this is not the case, we can eventually
select some particular HDW-multivector field solution, and apply an integrability al-
gorithm in order to find a submanifold § — J'*E (if it exists), where this multivector
field is integrable (and tangent to $).

REMARKS. e (Restricted Hamiltonian systems). There are many interesting cases in
field theories where the Hamiltonian field equations are established not in J'*E, but
rather in a submanifold j, : P — J'*E, such that P is a fiber bundle over E (and M),
and the corresponding projections T4 : P — E and T} : P — M satisfy T!0jy = 74 and
Tlojo = 7.
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Now, the existence of HDW-multivector fields is not assured. However, an algorith-
mic procedure can be outlined with the aim of obtaining a submanifold S of P, where
HDW-multivector fields exist, can be outlined. Of course the solution is not unique, in
general, but the number of arbitrary functions is not the same as above (it depends
on the dimension of Sy).

Finally, the question of integrability must be considered, and similar considerations
to those above must be made for the submanifold Sy instead of J!*E.

e (Hamiltonian system associated with a hyper-regular Lagrangian system). If the
Hamiltonian system (J'*E,Qy,) is associated with a hyper-regular Lagrangian system,
then there exists the so-called Legendre map, which is a diffeomorphism between
JYE and J'*E [3, 5, 10]. In this case, it can be proved [10] that, if X¢ € ¥™(J'F) and
Xy € X™(J1*E) are multivector fields solution of the Lagrangian and Hamiltonian field
equations, respectively, then

AM"TF£o0Xy = fXyoF% (4.13)
for some f € C*(J'*E). That is, we have the following (commutative) diagram:

m 1 m 1%
AT EmA TJ**E (4.14)

JIE re > JI*E
we say that the classes {X¢} and {Xs} are F¥-related.

5. Conclusions and outlook. We have used multivector fields in fiber bundles for
setting and studying the Lagrangian and Hamiltonian field equations of first-order
classical field theories. In particular, we have shown that:

e The field equations for first-order classical field theories in the Lagrangian for-
malism (Euler-Lagrange equations) can be written using multivector fields in J'E. This
description allows us to write the field equations for field theories in an analogous
way to the dynamical equations for (time-dependent) Lagrangian mechanical systems.

e The Lagrangian equations can have no integrable solutions in J'E, for neither
regular nor singular Lagrangian systems.

In the regular case, Euler-Lagrange multivector fields (i.e., semiholonomic solutions
to the equation i(X¢)Q¢ = 0) always exist; but they are not necessarily integrable. In
the singular case, not even the existence of such an Euler-Lagrange multivector field
is assured. In both cases, the multivector field solution (if it exists) is not unique.

¢ The Hamiltonian field equations can be written using multivector fields in J'*E
(the multimomentum bundle of the Hamiltonian formalism) in an analogous way to
the dynamical equations for (time-dependent) Hamiltonian mechanical systems.

e The field equations i(Xy)Qp = 0, with Xy € X¥™(J'*E) locally decomposable and
Tl-transverse, have solution everywhere in J'*E, which is not unique; that is, there
are classes of Hamilton-De Donder-Weyl multivector fields which are solutions to these
equations. Nevertheless, these multivector fields are not necessarily integrable every-
where in J'*E.
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e This multivector field formulation is especially useful for characterizing sym-
metries, both in the Lagrangian and Hamiltonian formalisms of field theories. First
attempts at this characterization have been already carried out [9], but new develop-
ments in this area are expected in the future.
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