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We deal with a 2m-dimensional Riemannian manifold (M,g) structured by an affine con-
nection and a vector field �, defining a �-parallel connection. It is proved that � is both a
torse forming vector field and an exterior concurrent vector field. Properties of the curva-
ture 2-forms are established. It is shown that M is endowed with a conformal symplectic
structure Ω and � defines a relative conformal transformation of Ω.
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1. Introduction. In [5], a class of odd-dimensional manifolds endowed with a �-

parallel connection was investigated.

In the present paper, we consider a 2m-dimensional Riemannian manifold (M,g),
structured by an affine connection defined by the torsion 2-forms SA, A ∈ {1,2, . . . ,
2m}. If {eA} and {ωA} are a vector and a covector basis, respectively, and �(TA) a

vector field (called the structure vector field of M), we assume that � defines a �-

parallel connection, in the sense of [9] (see also [2, 4]), that is, the connection forms

associated with {eA} and {ωA} satisfy

θAB =
〈
�,eB∧eA

〉= TBωA−TAωB, (1.1)

where ∧ means the wedge product of vector fields, which implies ∇�eA = 0.

Next, we assume that the torsion forms SA are exterior recurrent (abbreviated ER)

[1] with α=�� as recurrence form, that is, dSA =α∧SA.

Assuming that TA are also ER with a certain Pfaffian u as recurrence form, that is,

dTA = TAu, and denoting 2t = ‖�‖2, we have

∇�= 2tdp+(u−α)⊗�, (1.2)

where dp is the soldering form of M [3], which says that � is a torse forming vector

field [8, 11, 12].

We derive

∇2�= 2t(u+α)∧dp, (1.3)

that is, � is an exterior concurrent vector field [10] (see also [4]).

Setting S = S1∧S2∧···∧S2m, we find that the 4m-form S associated with M is ER

with 4mα as recurrence form.
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It is shown that the curvature 2-forms ΘAB are ER having the closed 1-form 2(u+
α) as recurrence form. We agree to define such a manifold as an exterior recurrent

curvature 2-form manifold.

Finally, assuming that M carries an almost symplectic form Ω, that is, a nondegen-

erate differential 2-form, we prove that Ω is a conformal symplectic form.

It is shown that � defines a relative conformal transformation of the conformal

symplectic form Ω (see [5]).

The above results are stated in Theorem 3.1.

2. Preliminaries. Let (M,g) be a 2m-dimensional oriented Riemannian manifold

structured by an affine differential operator ∇.

Let Γ(TM) be the set of sections of the tangent bundle and � : TM → T∗M and

� : T∗M → TM the classical musical isomorphisms defined by g (i.e., � is the index

lowering operator and � is the index raising operator).

Following [7], we denote by

Aq(M,TM)= Γ Hom
(∧q TM,TM) (2.1)

the set of vector-valued q-forms (q ≤ dimM) and we write for the affine operator ∇

d∇ :Aq(M,TM) �→Aq+1(M,TM). (2.2)

If dp ∈A1(M,TM) is the canonical vector-valued 1-form ofM , then as an extension

of the Levi-Civita operator and by [3], we agree to call dp the soldering form of M .

Let the unit vector fields {eA} be an orthonormal vector basis and {ωA} its corre-

sponding cobasis on M , A= 1, . . . ,2m. Then, if θAB , SA, and ΘAB denote the connection

forms, the torsion 2-forms and the curvature 2-forms, respectively, Cartan’s structure

equations are expressed by

∇eA = θAB ⊗eB, (2.3)

dωA =ωB∧θAB +SA, (2.4)

dθAB = θCB ∧θAC +ΘAB . (2.5)

We recall the following definitions (cf. [4]).

A vector field � is said to be a torse forming vector field [12] if it satisfies

∇�= f�+v⊗�, f ∈ C∞M, v ∈∧1M. (2.6)

Also, the vector field � is called exterior concurrent [10] if

∇2�=π∧dp, π ∈∧1M. (2.7)

If Z,Z′ ∈ Γ(TM), we also have the following formula:

dω
(
Z,Z′

)=�Z′ω(Z)−�Zω
(
Z′
)+ω([Z,Z′]), (2.8)

where � is the Lie derivative.



ON A CLASS OF EVEN-DIMENSIONAL MANIFOLDS . . . 683

Since dp =ωA∧eA, then it follows that

d∇(dp)= SA⊗eA. (2.9)

3. Manifolds with affine connection. In the present paper, we assume first that the

2m-dimensional Riemannian manifold (M,g) carries a structure vector field �(TA)
which defines a �-parallel connection, in the sense of [9] (see also [2, 4]). Such a con-

nection is expressed by

θAB =
〈
�,eB∧eA

〉= TBωA−TAωB. (3.1)

Since we quickly find from (3.1) that

∇�eA = 0, (3.2)

this agrees with the definition of �-parallel connection.

Setting 2t = ‖T‖2, we derive

∇�= 2tdp−α⊗�+
∑

A
dTA⊗eA, (3.3)

where α=�� is the dual 1-form of �. Also, we find by (3.1) and (2.4) that

dωA =α∧ωA+SA. (3.4)

Second, we assume that the torsion forms SA are exterior recurrent [1] having α as

recurrence form, that is,

dSA =α∧SA, (3.5)

and TA are ER with the Pfaffian u as recurrence form, that is,

dTA = TAu. (3.6)

We obtain dα= 0, that is, α� =� is a closed vector field.

Under these conditions, it follows from (3.3) and (3.6) that

∇�= 2tdp+(u−α)⊗�; (3.7)

this proves that � is a torse forming vector field [4, 8, 11, 12]. Since the operator ∇
acts inductively and clearly by (3.6), then

dt = 2tu, (3.8)

we infer

d∇(∇�)=∇2�= 2t(u+α)∧dp. (3.9)

This means that the vector field � is an exterior concurrent vector field [6, 10].
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By [6], (3.9) implies that

�(�,Z)=−(2m−1)2tg(�,Z), Z ∈ Γ(TM), (3.10)

where � denotes the Ricci tensor field on M .

By (3.9) and by standard calculation, we derive

∇4�= 0 (3.11)

and therefore we may say that the vector field � is an element of

Γ Hom
(∧4TM,TM

)
. (3.12)

On the other hand, recall that the Bianchi forms in the sense of Tachibana are defined

by

Ω(p)α1,...,α2p =Ωα2
α1 ∧Ωα3

α2 ∧···∧Ω
α2p
α2p−1 , (3.13)

where Ω
αq+1
αq are 2-forms. Thus, setting

S = S1∧S2∧···∧S2m, (3.14)

we find that

dS = 4mα∧S. (3.15)

Therefore, we may say that the 4m-form S associated with M is ER with 4mα as

recurrence form.

By (3.4) we may set

SA =u∧ωA (3.16)

and by (3.1) and the structure equations (2.5) we get after some calculations

ΘAB = 2(u+α)∧ωA
B +2tωB∧ωA. (3.17)

Next, performing the exterior differentiation ofΘAB , we derive, taking account of (3.8)

dΘAB = 2(u+α)∧ΘAB . (3.18)

This shows that all curvature forms ΘAB are ER and have the closed 1-form 2(u+α)
as recurrence form.

We agree to define such an even-dimensional manifold M as an exterior recurrent

curvature 2-form manifold.

Finally, assume that M carries an almost symplectic form Ω. Then, we may express

Ω as

Ω =
m∑

a=1

ωa∧ωa∗ , a∗ = a+m. (3.19)
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Taking the exterior differentiation of Ω, we find by (3.4) and (3.16) that

dΩ = 2(α+u)∧Ω. (3.20)

This shows that the manifold under consideration is endowed with a conformal

symplectic structure having α+u as covector of Lee.

Moreover, taking the Lie differentiation of Ω with respect to the structure vector

field �, we infer

��Ω =utΩ+2(u+α)∧
m∑

a=1

(
Taωa∗ −Ta∗ωa). (3.21)

Using (3.8) and (3.6), the exterior differentiation of (3.21) gives

d��Ω = 8tu∧Ω. (3.22)

Hence, by [4], the above equation says that � defines a relative conformal transfor-

mation of the conformal symplectic form Ω.

Summing up, we state the following theorem.

Theorem 3.1. Let (M,g) be a 2m-dimensional Riemannian manifold structured by

an affine connection defined by the torsion 2-forms SA, A = 1, . . . ,2m. Let �(TA) be a

structure vector field, which defines a �-parallel connection and assume that SA are

exterior recurrent, having �� as recurrence form (�� =α is a closed Pfaffian).

Then the following properties hold:

(i) � is both a torse forming and an exterior concurrent vector field;

(ii) the structure curvature 2-forms ΘAB are exterior recurrent with the closed Pfaf-

fian 2(u+α) as recurrence form;

(iii) the manifold M is endowed with a conformal symplectic structure Ω having

u+α as covector of Lee;

(iv) the vector field � defines a relative conformal transformation of Ω, that is,

d��Ω = 8tu∧Ω, where 2t = ‖�‖2.

References

[1] D. K. Datta, Exterior recurrent forms on a manifold, Tensor (N.S.) 36 (1982), no. 1, 115–
120.

[2] F. Defever and R. Rosca, On a class of even-dimensional manifolds structured by a �-
parallel connection, Tsukuba J. Math. 25 (2001), no. 2, 359–369.

[3] J. Dieudonné, Treatise on Analysis. Vol. IV, Pure and Applied Mathematics, vol. 10-IV,
Academic Press, New York, 1974.

[4] I. Mihai, R. Rosca, and L. Verstraelen, Some Aspects of the Differential Geometry of Vector
Fields. On Skew Symmetric Killing and Conformal Vector Fields, and Their Rela-
tions to Various Geometrical Structures, Centre for Pure and Applied Differential
Geometry (PADGE), vol. 2, Katholieke Universiteit Brussel Group of Exact Sciences,
Brussels, 1996.

[5] I. Mihai, L. Verstraelen, and R. Rosca, On a class of exact locally conformal cosymplectic
manifolds, Int. J. Math. Math. Sci. 19 (1996), no. 2, 267–278.
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