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We obtain new families of (1,2)-symplectic invariant metrics on the full complex flag man-
ifolds F(n). For n ≥ 5, we characterize n−3 different n-dimensional families of (1,2)-
symplectic invariant metrics on F(n). Each of these families corresponds to a different
class of nonintegrable invariant almost complex structures on F(n).
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1. Introduction. Mo and Negreiros [13], by using moving frames and tournaments,

showed explicitly the existence of an n-dimensional family of invariant (1,2)-
symplectic metrics on F(n) = U(n)/(U(1)×···×U(1)). This family corresponds to

the family of the parabolic almost complex structures on F(n). In this paper, we study

the existence of other families of invariant (1,2)-symplectic metrics corresponding to

classes of nonintegrable invariant almost complex structures on F(n), different to the

parabolic one.

Eells and Sampson [10] proved that if φ : M → N is a holomorphic map between

Kähler manifolds then φ is harmonic. This result was generalized by Lichnerowicz

(see [12] or [20]) as follows: let (M,g,J1) and (N,h,J2) be almost Hermitian man-

ifolds with M cosymplectic and N (1,2)-symplectic, then any ±-holomorphic map

φ : (M,g,J1)→ (N,h,J2) is harmonic.

If we want to obtain harmonic maps, φ : M2 → F(n), from a closed Riemann sur-

face M2 to a full flag manifold F(n) by the Lichnerowicz theorem, we must study

(1,2)-symplectic metrics on F(n) because a Riemann surface is a Kähler manifold

and we know that a Kähler manifold is a cosymplectic manifold (see [11] or [20]).

To study the invariant Hermitian geometry of F(n) it is natural to begin by studying

its invariant almost complex structures. Borel and Hirzebruch [5] proved that there

are 2(
n
2) U(n)-invariant almost complex structures on F(n). This number is the same

number of tournaments with n players or nodes. A tournament is a digraph in which

any two nodes are joined by exactly one oriented edge (see [6] or [15]). There is a

natural identification between almost complex structures on F(n) and tournaments

with n players (see [6] or [14]).

Tournaments can be classified in isomorphism classes. In this classification, one of

these classes corresponds to the integrable structures and the other ones correspond

to nonintegrable structures. Burstall and Salamon [6] proved that an almost complex

structure J on F(n) is integrable if and only if the tournament associated to J is

isomorphic to the canonical tournament (the canonical tournament with n players,

{1,2, . . . ,n}, is defined by i→ j if and only if i < j).
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Borel proved the existence of an (n− 1)-dimensional family of invariant Kähler

metrics on F(n) for each invariant complex structure on F(n) (see [2] or [4]). Eells and

Salamon [8] proved that any parabolic structure on F(n) admits a (1,2)-symplectic

metric. Mo and Negreiros [13] showed explicitly that there is an n-dimensional family

of invariant (1,2)-symplectic metrics for each parabolic structure on F(n).
In this paper, we characterize new n-parametric families of (1,2)-symplectic invari-

ant metrics on F(n), different to the Kähler and parabolic ones. More precisely, we

obtain explicitly n−3 different n-dimensional families of (1,2)-symplectic invariant

metrics, for each n≥ 5. Each of them corresponds to a different class of nonintegrable

invariant almost complex structure on F(n). These metrics are used to produce new

examples of harmonic mapsφ : M2→ F(n), using the previous result by Lichnerowicz.

2. Preliminaries. A full flag manifold is defined by

F(n)= {(L1, . . . ,Ln
)

: Li is a subspace of Cn,dimCLi = 1,Li⊥Lj
}
. (2.1)

The unitary group U(n) acts transitively on F(n). Using this action we obtain an

algebraic description for F(n)

F(n)= U(n)
T

, (2.2)

where T =U(1)×···×U(1)︸ ︷︷ ︸
n times

is a maximal torus in U(n).

Let p be the tangent space to F(n) at the point (T). An invariant almost com-

plex structure on F(n) is an ad(u(1)⊕···⊕u(1))-invariant linear map J : p→ p such

that J2 =−I.
A tournament (n-tournament) �, consists of a finite set T = {p1,p2, . . . ,pn} of n

players, together with a dominance relation, →, that assigns to every pair of players

a winner, that is, pi → pj or pj → pi. If pi → pj , then we say that pi beats pj . A

tournament � may be represented by a directed graph in which T is the set of vertices

and any two vertices are joined by an oriented edge.

Let �1 be a tournament withn players {1, . . . ,n} and �2 another tournament withm
players {1, . . . ,m}. A homomorphism between �1 and �2 is a mappingφ : {1, . . . ,n} →
{1, . . . ,m} such that

s
�1�������������������������������������������������������������������→ t �⇒φ(s) �2�������������������������������������������������������������������→φ(t) or φ(s)=φ(t). (2.3)

When φ is bijective we said that �1 and �2 are isomorphic.

An n-tournament determines a score vector (s1, . . . ,sn), such that
∑n
i=1 si =

(
n
2

)
,

whose components equal the number of games won by each player. Isomorphic tour-

naments have identical score vectors. Figure 2.1 shows the isomorphism classes of

n-tournaments for n= 2,3,4, together with their score vectors. This figure was taken

from Moon’s book [15]. In Moon’s notation not all of the arcs are included in the draw-

ings. If an arc joining two nodes has not been drawn, then it is to be understood that

the arc is oriented from the higher node to the lower node.
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(1)

(0,1)

(2)

(0,1,2)

(3)

(1,1,1)
(4)

(0,1,2,3)

(5)

(1,1,1,3)

(6)

(0,2,2,2)

(7)

(1,1,2,2)

Figure 2.1 Isomorphism classes of n-tournaments for n= 2,3,4.

The canonical n-tournament �n is defined by setting i→ j if and only if i < j. Up

to isomorphism, �n is the unique n-tournament satisfying the following equivalent

conditions:

• the dominance relation is transitive, that is, if i→ j and j→ k then i→ k,

• there are no 3-cycles, that is, closed paths i1→ i2→ i3→ i1, see [15],

• the score vector is (0,1,2, . . . ,n−1).
For each invariant almost complex structure J on F(n), we can associate an n-

tournament �(J) in the following way: if J(aij)= (a′ij), then �(J) is such that for i < j
(
i �→ j⇐⇒ a′ij =

√
−1aij

)
or

(
i←� j⇐⇒ a′ij =−

√
−1aij

)
(2.4)

(see [14]).

An almost complex structure J on F(n) is said to be integrable if F(n) is a com-

plex manifold, that is, F(n) admits complex coordinate systems with holomorphic

coordinate changes. Burstall and Salamon [6] proved the following result.

Theorem 2.1. An almost complex structure J on F(n) is integrable if and only

if �(J) is isomorphic to the canonical tournament �n.

Thus, if �(J) contains a 3-cycle then J is not integrable. Classes (2) and (4) in

Figure 2.1 correspond to the integrable almost complex structures on F(3) and F(4),
respectively.

An invariant almost complex structure J on F(n) is called parabolic if there is

a permutation τ of n elements such that the associated tournament �(J) is given,

for i < j, by

(
τ(j) �→ τ(i), if j−i is even

)
or

(
τ(i) �→ τ(j), if j−i is odd

)
. (2.5)

Classes (3) and (7) in Figure 2.1 represent the parabolic structures on F(3) and F(4),
respectively.

An n-tournament �, for n≥ 3, is called irreducible or Hamiltonian if it contains an

n-cycle, that is, a path π(n)→ π(1)→ π(2)→ ··· → π(n−1)→ π(n), where π is a

permutation of n elements.

An n-tournament � is transitive if, given three nodes i, j, k of �, then i → j and

j → k ⇒ i → k. The canonical tournament is the only transitive tournament up to

isomorphisms.
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We consider Cn equipped with the standard Hermitian inner product, that is, for

V = (v1, . . . ,vn) and W = (w1, . . . ,wn) in Cn, we have 〈V,W〉 =∑n
i=1viwi. We use the

convention vī = vi and fīj = fij̄ .
A frame consists of an ordered set of n vectors (Z1, . . . ,Zn), such that Z1∧···∧

Zn ≠ 0, and it is called unitary if 〈Zi,Zj〉 = δij̄ . The set of unitary frames can be

identified with the unitary group U(n).
If we write dZi =

∑
j ωij̄Zj , the coefficients ωij̄ are the Maurer-Cartan forms of the

unitary group U(n). They are skew-Hermitian, that is, ωij̄+ωj̄i = 0. For more details

see [7].

We may define all left-invariant metrics on (F(n),J) by (see [3] or [17])

ds2
Λ =

∑
i,j
λijωij̄⊗ωīj, (2.6)

where Λ= (λij) is a symmetric real matrix such that

λij > 0, if i≠ j, λij = 0, if i= j (2.7)

and the Maurer-Cartan forms ωij̄ are such that

ωij̄ ∈ C1,0((1,0) type forms
)⇐⇒ i �(J)

��������������������������������������������������������������������������������������������������������→ j. (2.8)

The metrics (2.6) are called of Borel type and they are almost Hermitian for every

invariant almost complex structure J, that is, ds2
Λ(JX,JY)= ds2

Λ(X,Y) for all tangent

vectors X, Y . When J is integrable, ds2
Λ is said to be Hermitian.

Let J be an invariant almost complex structure on F(n), �(J) the associated tour-

nament, and ds2
Λ an invariant metric. The Kähler form with respect to J and ds2

Λ is

defined by

Ω(X,Y)= ds2
Λ(X,JY), (2.9)

for any tangent vectors X, Y . For each permutation τ of n elements, the Kähler form

can be written in the following way (see [13]):

Ω =−2
√
−1
∑
i<j
µτ(i)τ(j)ωτ(i)τ(j)∧ωτ(i)τ(j), (2.10)

where

µτ(i)τ(j) = ετ(i)τ(j)λτ(i)τ(j), εij =




1 if i �→ j,
−1 if j �→ i,
0 if i= j.

(2.11)

Let J be an invariant almost complex structure on F(n). Then F(n) is said to be

almost Kähler if and only if Ω is closed, that is, dΩ = 0. If J is integrable and Ω is

closed, then F(n) is said to be a Kähler manifold.

Mo and Negreiros proved in [13] that

dΩ = 4
∑
i<j<k

Cτ(i)τ(j)τ(k)Ψτ(i)τ(j)τ(k), (2.12)
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where

Cijk = µij−µik+µjk, Ψijk = Im
(
ωij̄∧ωīk∧ωjk̄

)
. (2.13)

We denote by Cp,q the space of complex forms with degree (p,q) on F(n). Then,

for any i, j, k, we have either Ψijk ∈ C0,3 ⊕C3,0 or Ψijk ∈ C1,2 ⊕C2,1. An invariant

almost Hermitian metric ds2
Λ is said to be (1,2)-symplectic if and only if (dΩ)1,2 = 0.

If d∗Ω = 0 then the metric is said to be cosymplectic.

The following result due to Mo and Negreiros [13] is very useful to study (1,2)-
symplectic metrics on F(n).

Theorem 2.2. If J is a U(n)-invariant almost complex structure on F(n), n ≥ 4,

such that �(J) contains one of the 4-tournaments (5) or (6) in Figure 2.1; then J does

not admit any invariant (1,2)-symplectic metric.

3. Main theorem. It is known that on F(3) there are a 2-parametric family of Kähler

metrics and a 3-parametric family of (1,2)-symplectic metrics corresponding to the

nonintegrable almost complex structures class (the parabolic class). Then, each invari-

ant almost complex structure on F(3) admits a (1,2)-symplectic metric (see [4, 8]).

Barros and Urbano in [1] considered a family of almost Hermitian structures on F(3).
On F(4), there are four isomorphism classes of 4-tournaments or equivalently al-

most complex structures. Theorem 2.2 shows that two of them do not admit any

(1,2)-symplectic metric. The other two classes correspond to the Kähler and parabolic

cases. F(4) has a 3-parametric family of Kähler metrics and a 4-parametric family of

(1,2)-symplectic metrics which are not Kähler (see [13]).

On F(5), F(6), and F(7)we have the following families of (1,2)-symplectic invariant

metrics, different to the Kähler and parabolic ones: on F(5), two 5-parametric families;

on F(6), four 6-parametric families, two of them generalizing the two families on F(5)
and, on F(7) there are eight 7-parametric families, four of them generalizing the four

ones on F(6) (see [19] or [18]).

In this paper we prove the following result.

Theorem 3.1. Let J be an invariant almost complex structure on F(n) such that the

associated tournament �(J) is one of the tournaments in Figure 3.1. An invariant met-

ric ds2
Λk is (1,2)-symplectic with respect to J if and only if the matrix Λk = (λij) satisfies

λij = λi(i+1)+λ(i+1)(i+2)+···+λ(j−1)j , (3.1)

for i= 1, . . . ,n−1 and j = 2, . . . ,n, except for λ1n,λ2n, . . . ,λkn, which satisfy the follow-

ing relations:

λ2n = λ12+λ1n,

λ3n = λ12+λ23+λ1n,

...

λkn = λ12+λ23+···+λ(k−1)k+λ1n.

(3.2)
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1

2

k

...

... ···

n−3

n−2

n−1

n

Figure 3.1 Tournaments in Theorem 3.1.

This theorem provides an n-family of (1,2)-symplectic metrics on F(n), for each

1≤ k≤n−3. These families are different to the family described by Mo and Negreiros

in [13] and correspond to nonintegrable almost complex structures. All of the studied

families are n-parametric.

None of these families contains the normal metric. This fact is in accordance with

the result in [21] proved by Wolf and Gray, that the normal metric on F(n) is (1,2)-
symplectic if and only if n≤ 3.

The score vector of these families can be written as

(1,2, . . . ,k,k, . . . ,n−k−1,n−k−1, . . . ,n−3,n−2), (3.3)

for n≥ 2k+1.

In order to prove this theorem we prove, in the following section, some preliminary

results.

4. The families for k= 1,2,3,4

Proposition 4.1. Let J be an invariant almost complex structure on F(n), n≥ 4,

such that the associated tournament �(J) is the last tournament in Figure 4.1. An

invariant metric ds2
Λ is (1,2)-symplectic with respect to J if and only if the matrix

Λ= (λij) satisfies

λik = λi(i+1)+λ(i+1)(i+2)+···+λ(k−1)k, (4.1)

for i= 1, . . . ,n−1 and k= 2, . . . ,n, except for λ1n.
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1

2

3

4

(1,1,2,2)

1

2

3

4

5

(1,1,2,3,3)

1

2

3

4

5

6

(1,1,2,3,4,4)

1

2

3

4

5

6

7

(1,1,2,3,4,5,5)

1

2

...

n−1

n

Figure 4.1 Tournaments of the family for k= 1.

Proof. The proof will follow using induction over n. First, we prove the result

for n= 4. In this case, the tournament �(J) is isomorphic to the first tournament in

Figure 4.1. From (2.12) we obtain

dΩ = C123Ψ123+C124Ψ124+C134Ψ134+C234Ψ234

= (λ12−λ13+λ23
)
Ψ123+

(
λ12+λ14+λ24

)
Ψ124

+(λ13+λ14+λ34
)
Ψ134+

(
λ23−λ24+λ34

)
Ψ234

(4.2)

and dΩ(1,2) = (λ12−λ13+λ23)Ψ123+(λ23−λ24+λ34)Ψ234. Then ds2
Λ is (1,2)-symplectic

if and only if

λ12−λ13+λ23 = 0⇐⇒ λ13 = λ12+λ23,

λ23−λ24+λ34 = 0⇐⇒ λ24 = λ23+λ34.
(4.3)

Suppose that the result is true to n−1. For n we must consider two cases:

(a) i < j < k, i≠ 1, or k≠n. Then εij = εik = εjk = 1, and Cijk = λij−λik+λjk ≠ 0.

(b) 1< j <n. Then ε1j = εjn = 1, ε1n =−1, and C1jn = λ1j+λ1n+λjn ≠ 0.

(a) �⇒ (dΩ)2,1+(dΩ)1,2 =
∑
i<j<k

CijkΨijk, i≠ 1, k≠n.

(b) �⇒ (dΩ)3,0+(dΩ)0,3 =
n−1∑
j=2

C1jnΨ1jn ≠ 0.
(4.4)

Then ds2
Λ is (1,2)-symplectic if and only if Λ= (λij) satisfies the linear system

λ12−λ13+λ23 = 0,

λ12−λ14+λ24 = 0,

...

λ12−λ1(n−1)+λ2(n−1) = 0,
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λ13−λ14+λ34 = 0,
...

λ13−λ1(n−1)+λ3(n−1) = 0,

λ14−λ15+λ45 = 0,
...

λ1(n−2)−λ1(n−1)+λ(n−2)(n−1) = 0,

λ23−λ24+λ34 = 0,
...

λ23−λ2n+λ3n = 0,
...

λ(n−3)(n−2)−λ(n−3)n+λ(n−2)n = 0,

λ(n−2)(n−1)−λ(n−2)n+λ(n−1)n = 0.

(4.5)

This system contains all of the equations corresponding to the system for n−1.

Then all the elements of Λ for n−1 are equal to the matrix for n, except λ1(n−1). Using

the system above we see how to write λ1(n−1),λ2n,λ3n, . . . ,λ(n−2)n:

λ12−λ1(n−1)+λ2(n−1) = 0 �⇒λ1(n−1) = λ12+λ2(n−1)

�⇒λ1(n−1) = λ12+λ23+···+λ(n−2)(n−1),

λ(n−2)(n−1)−λ(n−2)n+λ(n−1)n = 0 �⇒λ(n−2)n = λ(n−2)(n−1)+λ(n−1)n,

λ(n−3)(n−2)−λ(n−3)n+λ(n−2)n = 0 �⇒λ(n−3)n = λ(n−3)(n−2)+λ(n−2)n

�⇒λ(n−3)n=λ(n−3)(n−2)+λ(n−2)(n−1)+λ(n−1)n,
...

λ23−λ2n+λ3n = 0 �⇒λ2n = λ23+λ3n

�⇒λ2n = λ23+λ34+···+λ(n−1)n.

(4.6)

In order to use induction to prove Theorem 3.1 we denote the symmetric matrix Λ
for this family by Λ1. Then,

Λ1 =




0 λ12 λ12+λ23 ··· λ12+···+λ(n−2)(n−1) λ1n

λ12 0 λ23 ··· λ23+···+λ(n−2)(n−1) λ23+···+λ(n−1)n

...
...

...
...

...
...

∗ ∗ ∗ ··· λ(n−2)(n−1) λ(n−2)(n−1)+λ(n−1)n

∗ ∗ ∗ ··· 0 λ(n−1)n

∗ ∗ ∗ ··· λ(n−1)n 0




.

(4.7)
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For F(4), this family is the same as the family obtained by Mo and Negreiros [13],

because the corresponding 4-tournament is the parabolic one. Any tournament of this

family in F(n), n ≥ 4, is irreducible and such that each of its 4-subtournaments are

transitive, class (4) in Figure 2.1, or irreducible, class (7) in Figure 2.1.

The following propositions are presented without proof. They are proved in a sim-

ilar way as Proposition 4.1.

Proposition 4.2. Let J be an invariant almost complex structure on F(n), n ≥
5, such that the associated tournament �(J) is the tournament (1) in Figure 4.2. An

invariant metric ds2
Λ is (1,2)-symplectic with respect to J if and only if the matrix

Λ= (λij) satisfies

λik = λi(i+1)+λ(i+1)(i+2)+···+λ(k−1)k, (4.8)

for i= 1, . . . ,n−1 and k= 2, . . . ,n, except for λ1n and λ2n, which satisfy λ2n = λ12+λ1n.

In this case, the corresponding symmetric matrix Λ2 is

Λ2 =




0 λ12 λ12+λ23 ··· λ12+···+λ(n−2)(n−1) λ1n

λ12 0 λ23 ··· λ23+···+λ(n−2)(n−1) λ12+λ1n

...
...

...
...

...
...

∗ ∗ ∗ ··· λ(n−2)(n−1) λ(n−2)(n−1)+λ(n−1)n

∗ ∗ ∗ ··· 0 λ(n−1)n

∗ ∗ ∗ ··· λ(n−1)n 0




.

(4.9)

Proposition 4.3. Let J be an invariant almost complex structure on F(n), n ≥
6, such that the associated tournament �(J) is the tournament (2) in Figure 4.2. An

invariant metric ds2
Λ is (1,2)-symplectic with respect to J if and only if the matrix

Λ= (λij) satisfies

λik = λi(i+1)+λ(i+1)(i+2)+···+λ(k−1)k, (4.10)

for i = 1, . . . ,n−1 and k = 2, . . . ,n, except for λ1n, λ2n, and λ3n, which satisfy λ2n =
λ12+λ1n and λ3n = λ12+λ23+λ1n.

Proposition 4.4. Let J be an invariant almost complex structure on F(n), n ≥
7, such that the associated tournament �(J) is the tournament (3) in Figure 4.2. An

invariant metric ds2
Λ is (1,2)-symplectic with respect to J if and only if the matrix

Λ= (λij) satisfies

λik = λi(i+1)+λ(i+1)(i+2)+···+λ(k−1)k, (4.11)

for i = 1, . . . ,n− 1 and k = 2, . . . ,n, except for λ1n, λ2n, λ3n and λ4n, which satisfy

λ2n = λ12+λ1n, λ3n = λ12+λ23+λ1n, and λ4n = λ12+λ23+λ34+λ1n.

Any tournament of these families is irreducible and such that any 4-subtournament

of it is transitive, class (4) in Figure 2.1, or irreducible, class (7) in Figure 2.1.
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1

2

n

(1)

1

2

3

n

(2)

1

2

3

4

...

...
...

n

(3)

Figure 4.2 Tournaments in Propositions 4.2, 4.3, and 4.4.

5. Proof of the main theorem. We use induction over n, beginning with n = 4.

Proposition 4.1 shows that the result is true for n= 4. Suppose that the result is true

for n−1.

We need to calculate the coefficients Cijk in (2.12). Then, we have three types of

3-subtournaments of �(J) to consider:

(a) for the 3-cycles we have that

Cijn = λij+λin+λjn ≠ 0, (5.1)

for k < j < n and i= 1, . . . ,k. It implies that (dΩ)3,0 ≠ 0;

(b) for the 3-subtournaments, (ijn), such that i < j ≤ k and i = 1,2, . . . ,k−1, we

have that

Cijn = λij+λin−λjn; (5.2)

(c) for the 3-subtournaments which neither satisfy (a) nor (b), we have that

Cijl = λij−λil+λjl, i < j < l. (5.3)

(b) and (c) give us the information to calculate (dΩ)1,2. Then, the metric ds2
Λ is

(1,2)-symplectic if and only if the matrix Λ= (λij) satisfies

(d)

λij+λin−λjn = 0; i < j ≤ k, i= 1,2, . . . ,k−1, (5.4)

(e)

λij−λil+λjl = 0; i < j < l, do not satisfy (a) and (b). (5.5)

(d) and (e) include all of the equations corresponding to the case for n−1, except the

equations given by the following 3-subtournaments

(
ij(n−1)

)
, with i= 1, . . . ,k−1, j = 2, . . .k, i < j. (5.6)
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Therefore, by the hypothesis of induction, all the elements of the matrix Λk corre-

sponding ton−1 are equal to the matrix forn, except the elements λ1(n−1),λ2(n−1), . . . ,
λk(n−1). Then we must calculate λ1(n−1), . . . ,λk(n−1), λ2n, . . . ,λ(n−2)n.

(i) We take i= k, j = k+1, and l=n−1 in (e). Then

λk(k+1)−λk(n−1)+λ(k+1)(n−1) = 0, (5.7)

hence

λk(n−1) = λk(k+1)+λ(k+1)(n−1)

= λk(k+1)+λ(k+1)(k+2)+···+λ(n−2)(n−1).
(5.8)

Using (e) again, with i= k−1, j = k, and l=n−1, we obtain

λ(k−1)k−λ(k−1)(n−1)+λk(n−1) = 0, (5.9)

hence

λ(k−1)(n−1) = λ(k−1)k+λk(n−1)

= λ(k−1)k+λk(k+1)+···+λ(n−2)(n−1).
(5.10)

If we continue using (e) for the rest of values: i = k−2, . . . ,2,1, j = k−1, . . . ,2,1, and

l=n−1, we arrive at the following equations:

λ23−λ2(n−1)+λ3(n−1) = 0,

λ12−λ1(n−1)+λ2(n−1) = 0,
(5.11)

which imply

λ2(n−1) = λ23+λ3(n−1)

= λ23+λ34+···+λ(n−2)(n−1),

λ1(n−1) = λ12+λ2(n−1)

= λ12+λ23+···+λ(n−2)(n−1).

(5.12)

Hence (e) implies

λi(n−1) = λi(i+1)+λ(i+1)(i+2)+···+λ(n−2)(n−1), (5.13)

for i= 1,2, . . . ,k.

(ii) If i= 1 and j = 2 in (d) then λ12+λ1n−λ2n = 0, and λ2n = λ12+λ1n. Using again

(d) with i = 1 and j = 3 we obtain λ3n = λ12+λ23+λ1n. We use (d) repeatedly up to

obtain

λin = λ12+λ23+···+λ(i−1)i+λ1n, (5.14)

for i= 2,3, . . . ,k.
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(iii) In order to calculate λ(k+1)n, . . . ,λ(n−2)n, we use (e) with i = k+1, . . . ,n−2. We

obtain

λ(n−2)(n−1)−λ(n−2)n+λ(n−1)n = 0 �⇒λ(n−2)n = λ(n−2)(n−1)+λ(n−1)n

λ(n−3)(n−2)−λ(n−3)n+λ(n−2)n = 0 �⇒λ(n−3)n = λ(n−3)(n−2)+λ(n−2)n

�⇒λ(n−3)n=λ(n−3)(n−2)+λ(n−2)(n−1)+λ(n−1)n
...

λ(k+1)(k+2)−λ(k+1)n+λ(k+2)n = 0 �⇒λ(k+1)n = λ(k+1)(k+2)+λ(k+2)n

�⇒λ(k+1)n = λ(k+1)(k+2)+λ(k+2)(k+3)+···+λ(n−1)n.
(5.15)

6. Harmonic maps. In this section we construct new examples of harmonic maps

using the following result due to Lichnerowicz [12].

Theorem 6.1. Let φ : (M,g,J1) → (N,h,J2) be a ± holomorphic map between al-

most Hermitian manifolds where M is cosymplectic and N is (1,2)-symplectic. Then φ
is harmonic.

In order to construct harmonic maps φ : M2 → F(n) using the theorem above, we

need to know examples of holomorphic maps. Then, we use the following construction

due to Eells and Wood [9].

Let h : M2→ CPn−1 be a full holomorphic map (h is full if h(M) is not contained in

any CPk, for all k < n−1). We can lift h to Cn, that is, for every p ∈M we can find a

neighborhood of p, U ⊂M , such that hU = (u0, . . . ,un−1) :M2 ⊃ U → Cn−0 satisfies

h(z)= [hU(z)]= [(u0(z), . . . ,un−1(z))].
We define the kth associated curve of h by

�k :M2 �→Gk+1
(
Cn
)
, z � �→ hU(z)∧∂hU(z)∧···∧∂khU(z), (6.1)

for 0≤ k≤n−1. And we consider

hk :M2 �→ CPn−1, z � �→ �⊥k (z)∩�k+1(z), (6.2)

for 0≤ k≤n−1.

The following theorem, by Eells and Wood [9], is very important because it gives the

classification of the harmonic maps from S2 ∼ CP1 into a projective space CPn−1.

Theorem 6.2. For each k ∈ N, 0 ≤ k ≤ n−1, hk is harmonic. Furthermore, given

φ : (CP1,g) → (CPn−1, Killing metric) a full harmonic map, then there are unique k
and h such that φ= hk.

This theorem provides in a natural way the following holomorphic maps:

Ψ :M2 �→ F(n), z � �→ (h0(z), . . . ,hn−1(z)
)
, (6.3)

called Eells-Wood’s maps. (See [16].)

We can write the set of (1,2)-symplectic metrics on F(n), characterized in the sec-

tions above, in the following way:

Mn =
{
gk = ds2

Λk : 1≤ k≤n−3
}
. (6.4)
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Using Theorem 6.1 we obtain the following results.

Proposition 6.3. Let φ : M2 → (F(n),g), g ∈Mn be a holomorphic map. Then φ
is harmonic.

A known fact, necessary to the following proposition, is that a (1,2)-symplectic

manifold is cosymplectic.

Proposition 6.4. Let φ : (F(l),g)→ (F(n),g̃) be a holomorphic map with g ∈Ml

and g̃ ∈Mn. Then φ is harmonic.
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