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The aim of this paper is to present an analytic characterization of the class of functions
convex in the negative direction of the imaginary axis of order («, 8). The method of the
proof is based on Julia’s lemma.
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1. Introduction. In this paper, we are interested in the subclasses of functions con-
vex in the negative (positive) direction of the imaginary axis of order («, ) denoted
by €V 4 (C@OV;,B)-

In [1, 2], the authors defined and studied the class I, of functions called angularly
accessible in the direction of the imaginary axis. Applying the method based on the
Carathéodory kernel theorem, they showed an analytic characterization of functions
in I'x. The same class I, with applying the Schwarz-Christoffel formulas and a method
of approximation by polygons was defined and examined again in [8], where the author
used the name parallel accessible domains (functions) of order .

The aim of this paper is to introduce and analytically characterize functions in the
class €V p (CGOV;,B)' In the case when & = 8 = 1, the results reduce to the class €V~
(@¥'*) of functions convex in the negative (positive) direction of the imaginary axis.
These classes were distinguished as the subclasses of the class of functions convex
in the direction of the imaginary axis in [6]. In [4, 5], the author examined the class Ly
of functions called convex in the direction of the negative real half-axis. To be precise,
an analytic and univalent function f in the unit disk D belongs to Ly if and only if for
every w € f(D) the half-line {w+t:t € [0,+0)} is contained in f (D). Applying the
Carathéodory kernel theorem the author proved, in a quite simple way, an analytic
characterization of the class L. Since if € €V" and —if € €V~ if f € Ly, the same
was done for the classes ¢V and €7 . In [9], a new proof of analytic formulas for the
classes €V~ (€¥*) based on Julia’s lemma were found. The same idea is used in this
paper. At the end we notice that the classes €V, , and €V, , are proper subclasses
of I.

2. Preliminaries. Let C =Cu{w}, D ={z € C:|z| < 1} denote the open disk in the
plane and let T = 0D. Let & denote the class of all analytic univalent functions in D.
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For each k > 0, let

®k={zeﬂ):|1_z|2<k} 2.1)
1-|z[?
denote the disk in D called the oricycle. The oricycle Qy is a disk in D whose boundary
circle 00y is tangent to T at z = 1.

In the proof of the main theorem, we apply the Julia lemma (see [7]; see also [3,
page 56]) recalled below.

LEMMA 2.1 (Julia [7]). Let w be an analytic function in D with |w(z)| < 1 for z € D.
Assume that there exists a sequence (z,) of points in D such that

lim z, =1, lim w(zy,) =1, (2.2)
Nn—oo Nn—oo
im L@@ 2.3)
n-o 1— |z,
Then
_ 2 2
1 w(z)|2 < 11 Z|2, zeD, (2.4)
1-|w(z)] 1-1z]
and hence, for every k > 0,
w(0Qy) C Opg. (2.5)
REMARK 2.2. Since
1-|w(z)| _1-]w(0)]
-1zl Zl+\w(0)|’ zeD, (2.6)

for every function w analytic in D with |w(z)| < 1 for z € D, the constant A defined
in (2.2) is positive (see [3, page 43]).

3. Convexity in the negative direction of the imaginary axis of order («, ). We
start with notation. For w € C and 0 € [0,27), let

[w,0]={w+te?:t €[0,+)}. (3.1)
For A,Bc C and w € C, let
A+xB={urveC:ueAAv €B}, A+w =A+{w}. (3.2)
For fixed &, B € [0,1], let
A((X,B)={ze<[:7(lfcx)gsargzs(1fﬁ)g}u{0}. (3.3)
Clearly, A(0,0) = {z€ C:Rez >0} and A(1,1) =[[0,0] = [0, ). Notice that A(c, ),

when & # 1 or B # 1, is a closed convex sector with the half-lines [0, (1 —B)7r/2] and
110,21 — (1 — x)7T/2] as its arms.
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DEFINITION 3.1. Fix &, € [0,1]. A domain Q c C, Q # C, is called convex in the
negative direction of the imaginary axis of order («x,f3) if and only if w + iA(x,B) is
contained in Q for every w € Q. The set of all such domains will be denoted by &%, 4.

DEFINITION 3.2. Let 67, z denote the class of all functions f € & such that f(D) €
%y p- Functions in €7, g will be called convex in the negative direction of the imaginary
axis of order (x,f).

The class %7 ; denoted for short by %~ and the corresponding class €77 ; denoted
by €%~ contain domains and functions called convex in the negative direction of the
imaginary axis, respectively.

LEMMA 33. IfO0<o1 <2 <1,0<B1<Bo<1l,andQe% thenQ e %,

«1,B1’ x2,B2"

Since &, g CZE” for all ¢, €[0,1], every domain in Zp s simply connected.

It is obvious that, for every f € €V, there are some points on T which “corre-
spond” to infinity lying on the boundary of f (D). In what follows, we will use a kind
of the boundary normalization for every f € €7, s by saying that z = 1 corresponds
to o € 0f (D). Since, in general, we cannot extend f on T, in order to be precise, we
will apply the notion of prime ends to formulate this normalization. Below we con-
struct a prime end p(Q) for every Q € %y p and next using the prime end theorem
we associate z = 1 with p« (Q).

Since for each &, € [0,1], €V C €V, we can construct for every domain Q in
22&’5, a prime end p (Q) in this way like in [9].

CONSTRUCTION OF A PRIME END FOR THE DOMAIN CONVEX IN THE NEGATIVE
DIRECTION OF THE IMAGINARY AXIS. When « = 8 =1 the detailed construction was
presented in [9]. The same construction is valid for & + 1 or  # 1 since CVyp C
@~ for all o, € [0,1]. But in what follows we need some notations used in the
construction, so we recall it again.

Let Qe %, g

(1) Assume first that Q is neither a vertical strip nor a half-plane with the boundary
straight line parallel to the imaginary axis. Then there exists wg € 0Q such that (wg +
iA(x,B))\{wo} liesin Q. Hence (I[wq,m/2]\ {wo}) C Q.Foreacht € (0, ), we denote
C(t)={w e C:|lw—wy| =t}.Itis clear that QN C(t) = & for every t € (0,). By [10,
Proposition 2.13, page 28], for each t € (0,) there are countably many crosscuts
Cx(t) Cc C(t), k € N, of Q each of which is an arc of the circle C(t). By Qu(t) Cc Q we
denote the component of Q\ C(t) containing the half-line I[[wq + it,11/2] \ {wo + it}
and by Q(t) € Ugen Ck(t) we denote the crosscut containing the point wg + it. So
Q(t) Cc 0Qy(t). Let now (t,) be a strictly increasing sequence of points in (0, %) such
that lim, .. t, = o and let (Q(t,)) be the corresponding sequence of crosscuts of Q.
It is easy to observe that

() Q(tn) NQ(tni1) = D for every n € N;
(i) Qo(tn+1) C Qo(ty) for every n € N;
(iii) diam® Q(ty) — 0as n — oo, where diam” B means the spherical diameter of the
set B c C.

Therefore (Cy,) = (Q(ty,)) forms a null chain of Q (see [10, page 29]). Notice also

that the null chain (C,) is independent of the choice of the sequence (t,,).
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The equivalence class of the null chain (C,,) defines the prime end denoted by p« (Q).
We can also show that infinity is a unique principal point of the prime end p. (Q).

(2) (a) Let Q be a vertical strip of width d > 0. Clearly, this is possible only when « =
B=1.Letwy € 0Q.Foreacht € (d,»),setC(t) = {w € C: |lw—wp| = t}.Itis clear that
QNC(t) + @ for every t € (d, ). Observe that Q(t) is a sum of two disjoint circular
arcs, denoted by Q" (t) and Q(t). Let Q" (t) be the circular arc which lies above
Q- (t). Precisely, Q" (t) cuts the boundary straight lines of Q at two points: w; (t) and
w» (t), and together with half-lines [[w, (t),77/2] and [[w,(t),1r/2] is a boundary of
a domain denoted by Q" (t). Moreover, Q*(t) C Q and Q* (t) nIntC(t) = @.

Let now (t,) be a strictly increasing sequence of points in (d, o) such that lim,, . t,
= o0, and let (Q*(ty)) be the corresponding sequence of crosscuts of Q. It is easy to
observe that the conditions (i)-(iii) listed in part (1) are fulfilled. Therefore (C,;) =
(Q*(tn)) forms a null chain of Q. The null chain (C,}) is independent of the choice of
the sequence (t,).

The equivalence class of the null chain (C,;) defines the prime end denoted by
pL(Q).We can also say that infinity is a unique principal point of the prime end p % (Q).

In a similar way the sequence (Q~ (t,)) is a null chain which represents the second
prime end p_ (Q), different from p} (Q).

For the next considerations, the prime end pZ (Q) will be denoted by p (Q).

(b) Let now Q be a half-plane with the boundary straight line parallel to the imaginary
axis. Let wy € 0Q, and for each t € (0,»), let C(t) = {w € C: |w —wy| = t}. Itis
clear that Q(t) = QN C(t) is a halfcircle for every t > 0. Repeating considerations
similar to those above we see that the sequence (Cy,) = (Q(ty,)), for an arbitrary strictly
increasing sequence (t, ) of points in (0, o) such that lim,, t,, = o, forms anull chain
of Q which represents a prime end denoted by p« (Q).

In this way, we construct for every Q) € %4 p In @ unique way, a prime end po(Q).
We can also show that infinity is a unique principal point of the prime end p(Q).

Therefore, the following proposition follows.

PROPOSITION 3.4. For every Q) € QZ;Vﬁ, o, B € [0,1], the prime end p(Q) is of the
first or of the second kind.

Let f € €V 5 and Q = f(D). By the prime end theorem there exists a bijective
mapping f of the unit circle T onto the set of all prime ends of Q (see [10, page 30]).
Hence there is a unique . € T such that p.(Q) = f (C»). We can also show that
infinity is a unique principal point of the prime end p. (Q).

If now f € €V 4, then we can write p (Q) = F(Co) for unique o € T.

4. An analytic characterization of the class of function convex in the negative
direction of the imaginary axis of order («,f). In the proof of the main theorem,
which analytically characterizes the class €7 5, we need the following lemma which
was proved in [9] in an easy way.

LEMMA 4.1. Every sequence (a,) of positive numbers with

lim (ajaz---a,) =0 (4.1)

n—oo
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has a convergent subsequence (a,) and

Os’limank =a=<1. 4.2)

Now we prove the theorem which says that every function f € €V, 5, with p« (f (D))
= f (1), preserves convexity in the negative direction of the imaginary axis of order
(x, B) on every oricycle Q.

THEOREM 4.2. Let &,f € [0,1] and f € §. Then f € €V and p«(f(D)) = f(1),
if and only if f(Oy) € % g for every k > 0.

PROOF. (1) Assume that f € ¥,z and T = 1 corresponds to the prime end
P~ (f(D)). For each u € A(«x, B), let

wy(z) = fFHf(z)+iu), zeD. 4.3)

Since f(D) €%, 4, f(2) +iu € f(D) for every u € A(x,B) and z € D. Hence, from the
univalence of f, it follows that w,, is well defined.

Fixu e A(x,B) and let Q € %;’ﬁ.

We select two points: wy € 0Q and w; € Q, in the following way. If Q is not a vertical
strip or a half-plane with the boundary straight line parallel to the imaginary axis, then
there exists wy € 0Q such that (wy+iA(x,B))\ {wp} liesin Q. Since (wo +iu) € (wo+
iA(x, B)), the half-line [ starting from wy and going through u lies in wq +iA(«x, ).
Consequently, (I\ {wo}) C Q. Fix w; € I\ {wg}.

In the case when Q is a vertical strip or a half-plane with the boundary straight
line parallel to the imaginary axis, let w; € Q be arbitrary and w, € 0Q be such that
Imw; = Imwy.

Assume now that, for Q = f (D), the points wy and w; are chosen as above. Consider
the sequence (wy,) = (w; +i(n —1)u) of points in I\ {wo} and the corresponding
sequence (z,) = (f~'(wy)) of points in D.

With a notation as in the construction of a prime, end let C(t,) = {w € C:
lw —wg| = lwy, —wo|}, where t,, = |w,, —wyl, and let Q (t,,) C C(t,), for n € N, denote
the crosscut of f(D) containing w,,. From the method of choosing w, and w;, we see
that the conditions (1)-(3) are satisfied and (Q(t;)) is a null chain representing the
prime end p., (f(D)). By the prime end theorem (f~'(Q(ty))) is a null-chain in D that
separates the origin from . = 1 for large n. Since z,, = f~'(w,) € f~1(Q(t,)) and
diam f~1(Q(t,)) — 0 for n — o, we conclude that lim,, .., z, = 1. Observe that

wyu(zp) = FH (wn+iu) = zp41. (4.4)
Let now
anzw, nenN. 4.5)
1—|zn|
Hence
an=1_|wu(zn)| =1_|Zn+1| (4.6)

1—|zn] 1-|znl|’
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for all n € N. Consequently,

lim(alaz---an)—lim(l|ZZ|1|Z3\... 17|Z"’ 1|Zn+1|>
n—o n-w\1-|z1| 1-|z2| 1-|zn-1| 1-|zu|
(4.7)
:lim1_|2"“|:0.

By Lemma 4.1, there exists a convergent subsequence (a,, ) of the sequence (a,) such
that

0=< l{im an, =A(u) < 1. (4.8)

Hence we conclude that, for each u € A(«, ), there exists a convergent subsequence
(zy,) of the sequence (z,) such that

hm 1 - |wu(znk) |

=A(u) <1. (4.9)
k= 1=z, ]|

In view of Remark 2.2, A(u) > 0 for every u € A(«x, ). By this way, w, satisfies the
assumptions of the Julia lemma with A(u) € (0,1]. Hence

Wy (Ok) € Orquk C Ok 4.10)

for every u € A(x,B) and k > 0. This yields f~'(f(Ox) +iu) C O, so f(Or) +iu C
S (Oy) for every u € A(«x,B). Therefore f(Ox) € % 4 for every k > 0.

(2) Now assume that f(Qx) € %, ;4 for every k > 0. Since « € 0 f(Oy) for every k > 0
and

F(D) = f(O), (4.11)

k>0

c© € 0f(D) and f(D) € %&‘ﬁ. Observe also that there exists a prime end p.(f(D))
which corresponds to some point . € T. We need to show that ., = 1.

To this end, let k > 0 be fixed and suppose that . + 1.

Let (Q(ty)) be an arbitrary sequence of crosscuts of f(D) which represents the
prime end p (f (D)) corresponding in a unique way to a point C € T, that s, (Q(ty))
is a null-chain of f(D). By the prime end theorem (f~'(Q(t,))) is a null-chain that
separates in D the origin and Z. for large n. Since €., # 1 and diam f~'(Q(t,)) — 0
for n — c we see that

FHQ(tn) N0k = @, (4.12)

for large n.

On the other hand, f(Ox) € %, 5, which implies that Q (t,) N f(Ox) # @ for large
n € N. This contradicts (4.12) and shows that C, = 1 and p (f (D)) = f(l). The proof
of the theorem is finished. O

Using Theorem 4.2 we find an analytic characterization of functions in the class
CV o p-
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THEOREM 4.3. Let o, B € [0,1]. If f € €V g and p=(f(D)) = f(1), then
—B%sarg{—i(l—z)zf’(z)}scx%, zeD. (4.13)

PROOF. LetQ = f(D). The case « = B = 1 is well known and can be found in [5, 6, 9].
Assume that & # 1 or 8 # 1. This means that A(«, ) is a closed convex sector which
does not reduce to the half-line I[0,0]. Now we prove that (4.13) is true for all points
on yx = 00\ {1} for every k > 0. We use the following parametrization of yy:

1+ ke'?
1+k "’

Yr:z=2(0) = 0 e (0,2m). (4.14)

Let Iy = f(yx), since yy is positively oriented, so is Ix. For each z € y; we denote by
T(z) the tangent vector to Iy at w = f(z), that is,

T(2) =2 (0)f (2(0)), 4.15)

where z = z(0) is given by (4.14). Since

2 k2 T 2_4ksin2(9/2) , ,
(1-2z(0)) 7(1+k)2(1 e't) = a1 z'(0)i
=2Re{l1-z(0)}z'(0)i, 0O €(0,2m), (4.16)
T(z)=—i(1_z)2f,(z) Z € .

2Re{l-z} ’

Let V denote the closed convex sector with vertex at w and with the half-lines
l[w,xmr/2] and l[w, 21 — f17/2] as its arms. This means that (w +iA(«x, 8)) UV forms
a closed half-plane containing the half-line I[w, x1r/2].

Fix k > 0. By Theorem 4.2, f(Qy) € %, p for every k > 0. Therefore by an easy
observation we see that w +iA(«x,8) C f(Qg). Hence it follows that the tangent line
to I} at w cannot intersect the interior of the sector w + iA(«, ). This implies that
T(z) lies in V. Consequently, in view of (4.16), we have

—B%sarg{'r(z)}:arg{—i(l—z)zf’(z)}sag 4.17)

for z € yy. As k was arbitrary, this is true in D. ]
Now we prove the converse theorem.

THEOREM 4.4. Let &, B € [0,1]. If f € o and (4.13) is true, then f € €V, and
P (f(D)) = f(1).

PROOF. (1) Suppose that there exists zy € D such that the equality in the left-hand
side of (4.13) holds. Then it holds in the whole disk D, that is, there exists a positive
real number a such that

—i(1-2)2f'(z) =ae P2 zeD. (4.18)
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This is satisfied only for

aie—iBrr/Z

f(z)=b+ , zeD, (4.19)

1-z
where b € C.

In a similar way, if the equality in the right-hand side of (4.13) holds for some z, € D,
then it holds only for

aieiom/z

(Z) b 5 zZ e 5 ( 20)
Wllele b c (( .

Particularly, if & = 8 = 0, then (4.13) is true only for
f@=b+*, zeD, 4.21)

where b € C and a € R\ {0}.

Functions (4.19) and (4.20) map D onto half-planes and a simple geometric viewing
shows that they are elements of €V p with p (f(D)) = f(l).

(2) Suppose that in (4.13) strong inequalities holds. Since f € ¥, f is univalent
in D (see [5, 4, 6]). We show that f(D) € o p

Suppose, on the contrary, that f(D) ¢ ZZ;(‘B. By Theorem 4.2, there exists k > 0 such
that f(Oy) ¢ %45 This means that (wo + iA(x,B)) \ {wo} is not contained in f(Oy)
for some wy € f(Oy).

Suppose that

nm{wmnfﬁg]ig. (4.22)

Thus there exists w; € Iy nl[wq, ™ — B17/2], W1 + Wy, such that the segment [wq, w1)
liesin f(Qy). Let T(z;) be the tangent vector to Iy at w; = f(z;), where z; € yy. Let V
denote the closed convex sector with vertex at w; and with the half-lines [[w;, x1T/2]
and I[wq,2m — B1r/2] as its arms. This means that (w; + iA(x,B8)) UV is a closed
half-plane containing the half-line [[w;, x7r/2]. Let H be the complementary closed
half-plane. Hence 7(z;) lies in H which means that

arg{t(z1)} € [—Tr,—Bg] U [n—B%,n], (4.23)

contrary to (4.13).
In a similar way we obtain a contradiction assuming that

Hm{wmag]¢®. (4.24)

This ends the proof. O

REMARK 4.5. For o« = 8 =1, Theorems 4.3 and 4.4 show the well-known analytic
characterization of the class 6.
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The following theorems are immediate consequences of Theorems 4.3 and 4.4
by applying them to the function f(z) = g(e *z), z € D, where g € €Vyp and
Px(g(D)) =g(1).

THEOREM 4.6. Let o, f € [0,1]. If f € €V o g3 and p~(f(D)) = f(e™), u € R, then

—ﬁg <arg{—ie"(1—e #z)°f'(2)} < (x%, zeD. (4.25)

THEOREM 4.7. Let «,B € [0,1]. If f € sl and (4.25) is true for u € R, then f € €V 5
and p«(f(D)) = f ().

5. Convexity in the positive direction of the imaginary axis of order («, ). The
results presented in Section 4 can be applied at once to the functions called convex in
the positive direction of the imaginary axis of order (x, ).

DEFINITION 5.1. Fix o, € [0,1]. A domain Q c C, Q + C, will be called convex
in the positive direction of the imaginary axis of order («, ) if and only if the sector
w —iA(«x, ) is contained in Q for every w € Q. The set of all such domains will be
denoted by % ¢

DEFINITION 5.2. Let €%, 4 denote the class of all functions f € & such that f (D) €
%;’B. Functions in the class C@V;,B will be called convex in the positive direction of the
imaginary axis of order (x, ).

Since f € %"V;Q‘ﬁ if and only if - f € 67, g we have the following theorems.

THEOREM 5.3. Letx,B € [0,1]andlet f € ¥. Then f € €V z and pe(f (D)) = f(1),
if and only if f(Oy) € %, 4 for every k > 0.

THEOREM 5.4. Let «,B € [0,1]. If f € 6V, wp and p (f (D)) *f(e‘“) u € R, then
—Bgsarg{iei“(l—e’”‘z) f (z)} <o<— zeD. (5.1)

THEOREM 5.5. Let &, € [0,1]. If f € sl and (5.1) is true for y € R, then f € €V 4 4
and p.. (f(D)) = f(e™).
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