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1. Introduction. Throughout this paper, A represents an associative algebra over

the complex field C, and the Jacobson radical of A and the center of A are denoted by

rad(A) and Z(A), respectively. Let I be any closed (2-sided) ideal of the Banach algebra

A. Then let QI denote the canonical quotient map from A onto A/I. Recall that an

algebraA is prime if aAb = {0} implies that either a= 0 or b = 0. A mapping f :A→A
is called commuting (resp., centralizing) if [f (x),x] = 0 (resp., [f (x),x] ∈ Z(A)) for

all x ∈ A. More generally, for a positive integer n, we define a mapping f to be n-

commuting (resp., n-centralizing) if [f (x),xn] = 0 (resp., [f (x),xn] ∈ Z(A)) for all

x ∈ A. A linear mapping d : A→ A is called a derivation if d(xy) = d(x)y +xd(y)
for all x,y ∈A.

The Singer-Wermer theorem, which is a classical theorem of Banach algebra theory,

states that every continuous derivation on a commutative Banach algebra maps into

its Jacobson radical [9], and Thomas [10] proved that the Singer-Wermer theorem

remains true without assuming the continuity of the derivation. (This generalization

is called the Singer-Wermer conjecture.) On the other hand, Posner [6] obtained two

fundamental results in 1957: (i) the first result (the so-called Posner’s first theorem)

asserts that if d and g are derivations on a 2-torsion free prime ring such that the

product dg is also a derivation, then either d = 0 or g = 0. (ii) The second result

(the so-called Posner’s second theorem) states that if d is a centralizing derivation

on a noncommutative prime ring, then d = 0. As an analytic analogue of Posner’s

second theorem, Mathieu and Runde [5, Theorem 1] generalized the Singer-Wermer

conjecture by proving that every centralizing derivation on a Banach algebra maps

into its Jacobson radical. The main objective of this paper is to obtain a generalization

(Theorem 2.3) of the above Singer-Wermer conjecture which is inspired by Posner’s

first theorem.

2. Results. To prove our main result we need the following two lemmas.

Lemma 2.1. Let d and g be derivations on a noncommutative prime algebra A. If

there exist a positive integer n and α∈ C such that αd2+g is n-commuting on A, then

both d= 0 and g = 0 on A.
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Proof. For the convenience, we write f instead of αd2+g. Then the assumption

of the lemma can be written in the form

[
f(x),xn

]= 0 (2.1)

for all x ∈A. For α= 0, the result is obtained from [3, Corollary, page 3713]. Let α≠ 0.

Substituting x+λy (λ∈ C) for x in (2.1), we obtain

λQ1(x,y)+λ2Q2(x,y)+···+λnQn(x,y)= 0, x,y ∈A, (2.2)

where Qi(x,y) denotes the sum of terms involving i factors of y in the expansion of

[f (x+λy),(x+λy)n]= 0. Since λ is arbitrary, we have

Q1(x,y)=
[
f(y),xn

]+[f(x),xn−1y
]

+[f(x),xn−2yx
]+···+[f(x),yxn−1]= 0, x,y ∈A.

(2.3)

Substituting xy for y in (2.3), we get

0= x[f(x),xn−1y
]+[f(x),x]xn−1y

+x[f(x),xn−2yx
]+[f(x),x]xn−2yx

+···+x[f(x),yxn−1]+[f(x),x]yxn−1

+f(x)[y,xn]+2α
[
d(x)d(y),xn

]+x[f(y),xn], x,y ∈A;

(2.4)

and left multiplying (2.3) by x and subtracting the result from (2.4), we have

0= [f(x),x]xn−1y+[f(x),x]xn−2yx+···+[f(x),x]yxn−1

+f(x)[y,xn]+2α
[
d(x)d(y),xn

]
, x,y ∈A. (2.5)

In (2.5), replace y by yx to obtain

0= [f(x),x]xn−1yx+[f(x),x]xn−2yx2

+···+[f(x),x]yxn+f(x)[y,xn]x
+2α

[
d(x)d(y),xn

]
x+2α

[
d(x)yd(x),xn

]
, x,y ∈A;

(2.6)

and multiply by x on the right in (2.5) to obtain

0= [f(x),x]xn−1yx+[f(x),x]xn−2yx2+···+[f(x),x]yxn

+f(x)[y,xn]x+2α
[
d(x)d(y),xn

]
x, x,y ∈A. (2.7)

We now subtract (2.7) from (2.6) to get

d(x)yd(x)xn−xnd(x)yd(x)= 0, x,y ∈A. (2.8)

Replacing y by yd(x)z in (2.8), we obtain

d(x)yd(x)zd(x)xn−xnd(x)yd(x)zd(x)= 0, x,y,z ∈A. (2.9)
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According to (2.8), we can write, in relation (2.9), xnd(x)zd(x) for d(x)zd(x)xn and

d(x)yd(x)xn instead of xnd(x)yd(x), which gives

d(x)y
[
d(x),xn

]
zd(x)= 0, x,y,z ∈A. (2.10)

From (2.10) and primeness ofA, it follows that, for anyx ∈Awe have either [d(x),xn]
= 0 or d(x) = 0. In any case [d(x),xn] = 0 for all x ∈ A, which yields d = 0 on A by

[3, Corollary, page 3713]. Now the initial hypothesis yields that [g(x),xn]= 0, x ∈A,

so g = 0 on A, which completes the proof of the lemma.

Lemma 2.2. Let d be a derivation on a Banach algebra A and J a primitive ideal

of A. If there exists a real constant K > 0 such that ‖QJdn‖ ≤ Kn for all n ∈ N, then

d(J)⊆ J.

Proof. See [11, Lemma 1.2].

Now we prove our main result.

Theorem 2.3. Let d and g be derivations on a Banach algebra A. If there exist a

positive integer n and α∈ C such that αd2+g is n-commuting on A, then both d and

g map A into rad(A).

Proof. Let J be any primitive ideal of A. Using Zorn’s lemma, we find a minimal

prime ideal P contained in J, and hence d(P)⊆ P and g(P)⊆ P (see [5, Lemma]). Sup-

pose first that P is closed. Then the derivations d and g on A induce the derivations

d̄ and ḡ on the Banach algebra A/P , defined by d̄(x+P) = d(x)+P and ḡ(x+P) =
g(x)+ P (x ∈ A). In case A/P is commutative, both d̄(A/P) and ḡ(A/P) are con-

tained in the Jacobson radical of A/P by [10]. We consider the case when A/P is

noncommutative. The assumption that αd2+g is n-commuting on A gives that the

mapping αd̄2+ ḡ is n-commuting on A/P . Since A/P is a prime algebra, it follows

from Lemma 2.1 that both d̄ = 0 and ḡ = 0 on A/P . Consequently, we see that both

d(A) ⊆ J and g(A) ⊆ J. If P is not closed, then we see that �(d) ⊆ P by [2, Lemma

2.3], where �(T) is the separating space of a linear operator T . Then we have, by [8,

Lemma 1.3], �(QP̄d)=QP̄(�(d))= {0} whence QP̄d is continuous on A. This means

that QP̄d(P̄) = {0}, that is, d(P̄) ⊆ P̄ . Hence, we see that d induces a derivation d̃ on

the Banach algebra A/P̄ , defined by d̃(x+ P̄ )= d(x)+ P̄ (x ∈ A). This shows that we

can define a map

Ψ d̃nQP̄ :A �→A/P̄ �→A/P̄ �→A/J (2.11)

by Ψ d̃nQP̄ (x)=QJdn(x) (x ∈A,n∈N), where Ψ is the canonical induced map from

A/P̄ onto A/J (the relation P̄ ⊆ J guarantees its existence). The continuity of d̃ is

clear from [8, Lemma 1.4], and hence yields that ‖QJdn‖ ≤ ‖d̃‖n for all n ∈ N. Now,

according to Lemma 2.2, we obtain that d(J)⊆ J. Following the same argument with g,

we see that g(J)⊆ J. Then the derivations d and g on A induce the derivations d̂ and

ĝ on the Banach algebra A/J, defined by d̂(x+J)= d(x)+J and ĝ(x+J)= g(x)+J
(x ∈A). The rest follows as when P is closed since the primitive algebra A/J is prime.

So we also obtain that d(A) ⊆ J and g(A) ⊆ J. Since J was arbitrary, we arrive at the

conclusion that d(A)⊆ rad(A) and g(A)⊆ rad(A).
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A mapping f :A→A is said to be skew-centralizing if 〈f(x),x〉 ∈ Z(A) for all x ∈A,

where 〈a,b〉 denotes the Jordan product ab+ba.

Corollary 2.4. Let d and g be derivations on a Banach algebra A. If there exists

α ∈ C such that αd2 +g is skew-centralizing on A, then both d and g map A into

rad(A).

Proof. Since 〈αd2(x)+g(x),x〉 ∈ Z(A) for all x ∈A, we obtain that [〈αd2(x)+
g(x),x〉,x]= 0 for all x ∈A. From the relation

0= [〈αd2(x)+g(x),x〉,x]

= 〈[αd2(x)+g(x),x],x〉

= [αd2(x)+g(x),x2],

(2.12)

we see thatαd2+g is 2-commuting, and hence Theorem 2.3 guarantees the conclusion.

As a noncommutative version of the Singer-Wermer theorem, we also obtain the next

result by using Lemma 2.1.

Theorem 2.5. Let d and g be continuous derivations on a Banach algebraA. If there

exist a positive integer n and α ∈ C such that the mapping αd2+g is n-centralizing

on A, then both d and g map A into rad(A).

Proof. Given any primitive ideal J of A, we have d(J) ⊆ J and g(J) ⊆ J by [7,

Theorem 2.2]. Thus we can suppose that A is primitive. From [αd2(x)+g(x),xn] ∈
Z(A) for all x ∈ A, we obtain [[αd2(x)+g(x),xn],xn] = 0, and hence [αd2(x)+
g(x),xn] is quasinilpotent by the Kleinecke-Shirokov theorem [1, Proposition 18.13].

Since Z(A) is trivial, it follows that [αd2(x)+g(x),xn] is a scalar multiple of 1, and

so [αd2(x)+g(x),xn] = 0 for all x ∈ A. Note that a commutative primitive Banach

algebra is isomorphic to the complex field C. Hence we also can assume that A is

noncommutative. Now, the primeness of A and Lemma 2.1 allows that both d= 0 and

g = 0 on A, which gives the result.

We do not know whether Theorem 2.5 can be proved without the continuity as-

sumption. However, in the special case when the Banach algebra is semisimple, we

obtain the following result.

Corollary 2.6. Let d and g be derivations on a semisimple Banach algebra A. If

there exist a positive integer n and α∈ C such that αd2+g is n-centralizing on A, then

both d= 0 and g = 0 on A.

Proof. The fact that every derivation on a semisimple Banach algebra is continu-

ous [4, Remark 4.3] guarantees the conclusion.
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