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1. Introduction. Throughout this paper, A represents an associative algebra over
the complex field C, and the Jacobson radical of A and the center of A are denoted by
rad(A) and Z(A), respectively. Let I be any closed (2-sided) ideal of the Banach algebra
A. Then let Q; denote the canonical quotient map from A onto A/I. Recall that an
algebra A is primeif aAb = {0} implies that either a = 0 or b = 0. A mapping f: A — A
is called commuting (resp., centralizing) if [ f(x),x] =0 (resp., [f(x),x] € Z(A)) for
all x € A. More generally, for a positive integer n, we define a mapping f to be n-
commuting (resp., n-centralizing) if [ f(x),x"] = 0 (resp., [f(x),x"] € Z(A)) for all
x € A. A linear mapping d : A — A is called a derivation if d(xy) = d(x)y +xd(y)
for all x,y € A.

The Singer-Wermer theorem, which is a classical theorem of Banach algebra theory,
states that every continuous derivation on a commutative Banach algebra maps into
its Jacobson radical [9], and Thomas [10] proved that the Singer-Wermer theorem
remains true without assuming the continuity of the derivation. (This generalization
is called the Singer-Wermer conjecture.) On the other hand, Posner [6] obtained two
fundamental results in 1957: (i) the first result (the so-called Posner’s first theorem)
asserts that if d and g are derivations on a 2-torsion free prime ring such that the
product dg is also a derivation, then either d = 0 or g = 0. (ii) The second result
(the so-called Posner’s second theorem) states that if d is a centralizing derivation
on a noncommutative prime ring, then d = 0. As an analytic analogue of Posner’s
second theorem, Mathieu and Runde [5, Theorem 1] generalized the Singer-Wermer
conjecture by proving that every centralizing derivation on a Banach algebra maps
into its Jacobson radical. The main objective of this paper is to obtain a generalization
(Theorem 2.3) of the above Singer-Wermer conjecture which is inspired by Posner’s
first theorem.

2. Results. To prove our main result we need the following two lemmas.

LEMMA 2.1. Let d and g be derivations on a noncommutative prime algebra A. If
there exist a positive integer n and « € C such that xd? + g is n-commuting on A, then
bothd =0 and g =0 on A.


http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com

580 KYOO-HONG PARK ET AL.

PROOF. For the convenience, we write f instead of ad? + g. Then the assumption
of the lemma can be written in the form

[f(x),x"]=0 (2.1)

for all x € A. For & = 0, the result is obtained from [3, Corollary, page 3713]. Let & = 0.
Substituting x + Ay (A € C) for x in (2.1), we obtain

AQ1(x,¥) +A%Qa(x,¥) ++ -+ +A"Qn(x,¥) =0, X,y €A, (2.2)

where Q;(x,y) denotes the sum of terms involving i factors of y in the expansion of
[f(x+Ay),(x+Ay)"] = 0. Since A is arbitrary, we have

Q1(x,y) = [f(),x"]+[f(x),x" " y]

(2.3)
+[fx),x"Pyx]+- -+ [f(x),yx" 1] =0, x,y€A.
Substituting xy for y in (2.3), we get
0=x[f),x" ' y]+[f(x),x]x"1y
+x[f(x),x" 2 yx]+[f(x),x]x" 2 yx
(2.4)
+o A x [ f 0, X+ [f (0, x]yx™T!
+ ) [y, x"]+2a[d(x)d(y),x" | +x[f(¥),x"], x,v €EA;
and left multiplying (2.3) by x and subtracting the result from (2.4), we have
0=[Ff),x]x" 'y +[f(x),x]x"2yx+---+[f(x),x]yx""! 05

+ ) [y, x"]+2a[d(x)d(¥),x"], x,y € A.
In (2.5), replace ¥ by yx to obtain

0=[f0),x]x" 'yx+[f(x),x]x"2yx?
o [ OO, x]yx™+ f 0 [y, xM ] x (2.6)
+2a[d(x)d(y),x"|x+2x[d(x)yd(x),x"], x,y €A

and multiply by x on the right in (2.5) to obtain

0=[fx),x]x" ' yx+[f(x),x]x" 2yx%+-- -+ [f(x),x]yx"

2.7
+ () [y, x"]x+2x[d(x)d(y),x"]x, x,v € A. @7

We now subtract (2.7) from (2.6) to get
dx)yd(x)x"-x"d(x)yd(x) =0, x,y€EA. (2.8)

Replacing y by v d(x)z in (2.8), we obtain

dx)yd(x)zd(x)x"—-x"d(x)yd(x)zd(x) =0, x,y,z€A. (2.9)
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According to (2.8), we can write, in relation (2.9), x"d (x)z d(x) for d(x)zd(x)x™ and
d(x)yd(x)x™ instead of x"d(x)y d(x), which gives

d(x)y[d(x),x"]|zd(x) =0, x,y,z€A. (2.10)

From (2.10) and primeness of A, it follows that, for any x € A we have either [d(x),x™"]
=0ord(x)=0.Inany case [d(x),x"™] =0 for all x € A, which yields d =0 on A by
[3, Corollary, page 3713]. Now the initial hypothesis yields that [g(x),x"] =0, x € A,
so g = 0 on A, which completes the proof of the lemma. |

LEMMA 2.2. Let d be a derivation on a Banach algebra A and J a primitive ideal
of A. If there exists a real constant K > 0 such that ||Q;d"™|| < K™ for all n € N, then
ai) <.

PROOF. See [11, Lemma 1.2]. O
Now we prove our main result.

THEOREM 2.3. Let d and g be derivations on a Banach algebra A. If there exist a
positive integer n and « € C such that xd? + g is n-commuting on A, then both d and
g map A intorad(A).

PROOF. Let J be any primitive ideal of A. Using Zorn’s lemma, we find a minimal
prime ideal P contained in J, and hence d(P) < P and g(P) < P (see [5, Lemma]). Sup-
pose first that P is closed. Then the derivations d and g on A induce the derivations
d and g on the Banach algebra A/P, defined by d(x +P) = d(x) +P and g(x +P) =
g(x)+P (x € A). In case A/P is commutative, both d(A/P) and §(A/P) are con-
tained in the Jacobson radical of A/P by [10]. We consider the case when A/P is
noncommutative. The assumption that «d? + g is n-commuting on A gives that the
mapping «d? + g is n-commuting on A/P. Since A/P is a prime algebra, it follows
from Lemma 2.1 that both d = 0 and § = 0 on A/P. Consequently, we see that both
d(A) < J and g(A) < J. If P is not closed, then we see that ¥(d) < P by [2, Lemma
2.3], where ¥(T) is the separating space of a linear operator T. Then we have, by [8,
Lemma 1.3], ¥(Qpd) = Qp(F(d)) = {0} whence Qpd is continuous on A. This means
that Qd(P) = {0}, that is, d(P) < P. Hence, we see that d induces a derivation d on
the Banach algebra A/P, defined by d(x +P) = d(x) + P (x € A). This shows that we
can define a map

Yd"Qp:A— AP — AP — A]] (2.11)

by Yd"Qp(x) = Q;d"(x) (x € A,n € N), where V¥ is the canonical induced map from
A/P onto A/J (the relation P < J guarantees its existence). The continuity of d is
clear from [8, Lemma 1.4], and hence yields that ||Q;d"| < ||d||" for all n € N. Now,
according to Lemma 2.2, we obtain that d(J) < J. Following the same argument with g,
we see that g(J) < J. Then the derivations d and g on A induce the derivations d and
g on the Banach algebra A/J, defined by dx+J)=d(x)+J and Jgx+])=gx)+]
(x € A). The rest follows as when P is closed since the primitive algebra A/ J is prime.
So we also obtain that d(A) < J and g(A) < J. Since J was arbitrary, we arrive at the
conclusion that d(A) crad(A) and g(A) crad(A). d
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A mapping f: A — Ais said to be skew-centralizing if {f (x),x) € Z(A) forall x € A,
where (a,b) denotes the Jordan product ab + ba.

COROLLARY 2.4. Let d and g be derivations on a Banach algebra A. If there exists
« € C such that xd? + g is skew-centralizing on A, then both d and g map A into
rad(A).

PROOF. Since (xd?(x)+g(x),x) € Z(A) for all x € A, we obtain that [{xd?(x) +
g(x),x),x] =0 for all x € A. From the relation

0=[{axd?(x)+g(x),x),x]
= ([xd*(x) +g(x),x],x) (2.12)
= [ad?(x) +g(x),x?],

we see that ®d?+g is 2-commuting, and hence Theorem 2.3 guarantees the conclusion.
O

As anoncommutative version of the Singer-Wermer theorem, we also obtain the next
result by using Lemma 2.1.

THEOREM 2.5. Letd and g be continuous derivations on a Banach algebra A. If there
exist a positive integer n and « € C such that the mapping xd? + g is n-centralizing
on A, then both d and g map A intorad(A).

PROOF. Given any primitive ideal J of A, we have d(J) < J and g(J) < J by [7,
Theorem 2.2]. Thus we can suppose that A is primitive. From [xd?(x) + g(x),x"] €
Z(A) for all x € A, we obtain [[axd?(x) +g(x),x"],x"] = 0, and hence [xd?(x) +
g(x),x"] is quasinilpotent by the Kleinecke-Shirokov theorem [1, Proposition 18.13].
Since Z(A) is trivial, it follows that [xd?(x) +g(x),x™"] is a scalar multiple of 1, and
so [axd?(x) +g(x),x™] = 0 for all x € A. Note that a commutative primitive Banach
algebra is isomorphic to the complex field C. Hence we also can assume that A is
noncommutative. Now, the primeness of A and Lemma 2.1 allows that both d = 0 and
g =0 on A, which gives the result. O

We do not know whether Theorem 2.5 can be proved without the continuity as-
sumption. However, in the special case when the Banach algebra is semisimple, we
obtain the following result.

COROLLARY 2.6. Letd and g be derivations on a semisimple Banach algebra A. If
there exist a positive integer n and « € C such that «d? + g is n-centralizing on A, then
bothd =0 and g =0 on A.

PROOF. The fact that every derivation on a semisimple Banach algebra is continu-
ous [4, Remark 4.3] guarantees the conclusion. O
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