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We prove that a Riemannian foliation with the flat normal connection on a Riemannian
manifold is harmonic if and only if the geodesic flow on the normal bundle preserves the
Riemannian volume form of the canonical metric defined by the adapted connection.
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1. Introduction. Let (M, gy) be a Riemannian manifold. A foliation % on M is Rie-
mannian and gy bundle-like if all the leaves are locally equi-distant to each other.
Such a foliation is characterized by the property that a geodesic orthogonal to the
foliation at one point is orthogonal everywhere. For a Riemannian foliation, consider-
able efforts have been made to give global characterizations of the property that it is
harmonic, that is, all of its leaves are minimal submanifolds. For examples, a Riemann-
ian foliation is harmonic if and only if either one of the following conditions holds:
(1) it is an extremal of the energy functional for special variations (see [2]); (2) it is
an extremal of the energy of the foliation under certain variations of the Riemannian
metric of the manifold (see [1]). In this paper, we give a dynamical characterization
of the harmonicity of a Riemannian foliation which has the flat normal connection in
the sense of Oshikiri [4].

Let & be a Riemannian foliation of dimension p and codimension g on a Riemannian
manifold M of dimension n (p +q = n) with bundle-like metric gj. Throughout, we
work in the smooth category and the following notations are used:

e TM is the tangent bundle of M.

e [ and L+ are the tangent bundle and the normal bundle of %, respectively.

e I'TM,TL, and I'L* are the spaces of sections of TM, L, and L+, respectively.

e :TM — L+, m*:TM — L, and Ps : L* — M are the canonical projections.

e VM js the Levi-Civita connection associated with gy.

Since ¥ is Riemannian, there exists a unique torsion-free metric connection V on
L+ which is called adapted and given as follows (see [2]): for Z e TL*,

m(X,Z] forXerlL,
VxZ = (1.1)
{n(véfz) for X eTL*.

Associated with the above connection there is a bundle map Cy : TL* — L+ called the
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connection map associated with % given as follows. For & € T;L* with (dPz) (&) =0,
Cs(8) = Vs Z, (1.2)

where Z is a curve in L* such that d/dt|;—oZ = & and o (t) = P5(Z(t)). This map gives
a metric g on L+ defined by

J(&,n) = gu((dPg);(&),(dPg) ;(n)) + g (Cs(8),Cs(n)) (1.3)

for &,n € TzL+. We denote the Riemannian volume form on L* associated with g by fi.
We define a local flow ¢b; on L+, called the normal geodesic flow of F as follows. For
z € L*, let y be a geodesic with initial velocity z. Since % is Riemannian, y(t) € L* for
each t in the domain of y. We put ¢;(z) = y(t) for z € L+ and t in the domain of y.
A foliation % is said to have the flat normal connection if the normal bundle L+ of &
admits an orthonormal frame field {E,1,...,En} such that gM(VlgEa,Eﬁ) =0 for all
o, f=p+1,...,nandall Z eTL*.
The purpose of this paper is to prove the following theorem.

THEOREM 1.1. Let & be a Riemannian foliation on a Riemannian manifold which
has a flat normal connection and [ the Riemannian volume form on L+ corresponding
to g. Then & is harmonic if and only if (¢¢) preserves fi.

2. The proof. Let C be avector field on L+ generated by the geodesic flow. It suffices
to show that & is harmonic if and only if (O¢fi)(z) = 0 at any given point z € L+, where
O¢ denotes the Lie derivative. Let {ej,...,e,} be an orthonormal basis of the tangent
space of M at the point m = P5(z) such thate; € L,, for i = 1,...,p and e, € L;;, for
x =p+1,...,n.In aneighborhood of m, we may choose a frame {Ey: x=p+1,...,n}
of L+, called an adapted frame, satisfying the following properties: E4(m) = ey, & =
p+1,...,m, Ve, Ep = (VY Eg) = 0and VxEx = ([X,E«]) = 0 for any smooth section
X of L on U (see [3]). Since ¥ has the flat normal connection, we may choose E, so
that Vg, Eg =0 for &, f = p+1,...,n. Completing this frame by an orthonormal frame
{Ei:i=1,...,p} of L with E;(m) = e;, we get a local orthonormal frame {E,...,E,} of
TM on aneighborhood U of m with Ex(m) = es for A =1,...,n. Let Eﬁ{ forA=1,...,n
be the horizontal lift of E4 to TL*, that is, the unique vector field on a neighborhood
of z in L* such that dPs(EX) = E4 and C3(EY) = 0, and E}, for « = p + 1,...,n the
vertical lift of E, on TL*, that is, the vector field on a neighborhood of z such that
dP(EY) =0 and C5(EY) = E4. We put E (z) = el and EY (z) = e%. Now we compute

[(©ci) ()] (ef.....ell el .....e})

M*s

flel,....[CE(2),....e5 ep 1, ...eq ey s ep)

~ H H |V Vv
uel, ep,epﬂ, W [CEQN(2),.0e5,ep005-0003)

M: w‘:L[\4= L

e

Ve [GEY](2), . eh).
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But,
ﬁ(e{i,...,[C,EiH](z),...,e’p{,egﬂ,...,eﬁ,e%l,...,e%)
=g([C.Ef'|(2),el!) = gu ((dPs)[C,E['] (m),e;),
(2.2)
aell,...el el .. [CEQ](2),....ell e, 1,....ep)

= gu((dPs) ([T,EF](2)),eq),

where m = P5(z) and « is the second fundamental form of % (see [2]).

Let W; be any vector field on M satisfying W;(@{m) = @}z for the local flows (p})
of E; and (®}) of E. From dPy o Efl = E; o Pz, we have Py o ¢! = @} o P5 for any t.
Therefore,

aPs ([T, EF1(2)) = 1o (aps o dit,) (€ (4(2)))

= Lo (det 0 dPy) (€ (](2))

d o
= ah:o(d(l’it"(p;)(z) (2.3)

_ %hzo(dcpit)(wi(cpé(m)))

= [Wi, Ei](m).
Hence we have

9m(dP5 ([T, EM)(2)),Ei(2)) = gm ([Wi, Ei], Ei) (m)
gu (Wi, VE Ei) (m)
(2.4)
= gu (Wi(m), x(E;,E;) (m))
= gu(z,x(Ei(m),E;(m))).

Thus, we have

[J(e{{,...,[§,EIH](2),...,e’;,egﬂ,...,eﬁ,e,‘gﬂ,...,e)/l)

M=

14
=—gm (Z,Z(X(Ei(m),Ei(m))) (2:5)
i=1

= —gu(z,T(m)),

where T(m) is the mean curvature vector of ¥ at m (see [2]).
On the other hand, we have

gM((dP@[E!Eg])(m)leu) = gM([WOUEO(](m)an()! (26)
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where W, is any vector field on M satisfying Wy (pfm) = @f z for the local flows @ of
Ey and @ of E¥, x = p +1,...,n. Since Wy (@m) is an integral curve of EX, we have
(Vi W) = C(EN) = 0. Moreover, by the choice of {Ey}, we have 1w (V{} Es)(m) = 0.
Therefore,

gu ((dPs[T,EY]) (m),eq) = gu ((Vif Ea) (M) — (VL Wa) (), e4) = 0. (2.7)
Thus, to complete the proof, it suffices to show that
fief,...,ef ey 1y, [CEx](2),...,e) =0, (2.8)
that is,
am(Cs ([T, Ex]1(2)),e«) = 0. (2.9)

For this purpose, we introduce a local coordinate system around a point z € L* as
follows: let (x*) 4=1..n : U — R™ be a distinguished chart on a neighborhood U of m €
M.To z € P71 (U) with P5(z) = m, we assign (x!(m),...,x"(m),zP* (m),...,z"(m))
as its coordinates, where z = 22:,“1 z%(m)Ey(m). Let y be a geodesic orthogonal to
the leaves of & and (x4(t): A =1,...,n) its local coordinates.

Write

n

y(t)= > z¥t)E«(y(D)). (2.10)

x=p+1
By the choice of {Ey}, we get

d

EZ(X:O (2.11)

for « = p +1,...,n. Moreover, if we express Ey as Eq = >{_; f&(0/0x4), where f4 is
a smooth function on U, we have

n d 2 n n i 3
—x) =~ =y= & = « A
;(dtx >8XA y= 2 2%a= 2 X 2%fiz 5 (2.12)

x=p+1 ax=p+1A=1

Equations (2.10) and (2.11) imply that (x4 (t),z%(t)) satisfy

ixA: i z*fa izfX:o (2.13)
A ) .
dt S dt

It follows that € can be locally expressed as

)
C=> zf~—. (2.14)
= ® 9xA

A simple computation using the above expression of C gives
0

[C,EX]:_Z(f&\JFZZﬁEa(f?))W- (2.15)

B

A
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It is easy to show that for a vector field £ = 3 4, EA(3/0x4) + 3, £%(3/02%), C5(E)
is given by

Cs(8) =D (é“+zr§‘AzB§A)Ea, (2.16)
154 B,A
where z = > z¥Eq and Vi, Ea = X )_ 1) ) ,Ey. Therefore,
Cs([C,EY]) =- > {f&‘+ZzﬁEa(f§‘)}FgAz”E5. (2.17)
5,0,A B

Butl"gA =0onUforA=1,...,nand 6,0 =p+1,...,n by the choice of the frame {E4}.
Hence Cs([C,EY]) = 0 and the proof is complete. |
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