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ABSTRACT. We characterize minimal open sets in topological spaces. We show that any
nonempty subset of a minimal open set is pre-open. As an application of a theory of
minimal open sets, we obtain a sufficient condition for a locally finite space to be a pre-
Hausdorff space.
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1. Introduction. Let X be a topological space. We call a nonempty open set U of X
a minimal open set when the only open subsets of U are U and @.

In this paper, we study fundamental properties of minimal open sets and apply
them to obtain some results on pre-open sets (cf. [2]) and pre-Hausdorff spaces.

In Section 2, we characterize minimal open sets, that is, we show that a nonempty
open set U is a minimal open set if and only if C1(U) = C1(S) for any nonempty subset
S of U. This result implies that any nonempty subset S of a minimal open set U is a
pre-open set.

In Section 3, we study minimal open sets in locally finite spaces. The results of this
section are closely related to the work of James [1], and these results will be used in
the next scetion.

In Section 4, we apply the theory of minimal open sets to study pre-open sets. Our
first main result of this section is a property of the set of all minimal open sets in
any nonempty finite open set which is not a minimal open set. This result enables
us to prove a generalization of Theorem 2.5, when U is a nonempty finite open set,
in Theorem 4.4. Theorem 4.5 shows that our theory of minimal open set is useful to
study pre-open sets.

Finally, we show that some conditions on minimal open sets implies pre-Hausdorff-
ness of a space, that is, if any minimal open set of a locally finite space X has two
elements at least, then X is a pre-Hausdorff space.

2. Minimal open sets. Let (X, T) be a topological space.

DEFINITION 2.1. A nonempty open set U of X is said to be a minimal open set if
and only if any open set which is contained in U is @ or U.

LEMMA 2.2. (1) Let U be a minimal open set and W an open set. Then U "W = & or
Ucw.
(2) Let U and V be minimal open sets. ThenUNV = orU =V.
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PROOF. (1) Let W be an open set such that UnW = &. Since U is a minimal open
setand UnW c U, we have UNnW = U. Therefore U c W.
R)IfUNV + &, then we see that U C V and V C U by (1). Therefore U = V. O

PROPOSITION 2.3. Let U be a minimal open set. If x is an element of U, thenU C W
for any open neighborhood W of x.

PROOF. Let W be an open neighborhood of x such that U ¢ W. Then UnW is an
open set such that UnW ¢ U and U NnW =+ &. This contradicts our assumption that
U is a minimal open set. O

PROPOSITION 2.4. Let U be a minimal open set. Then
U = n{W | W is an open neighborhood of x} (2.1)

for any element x of U.

PROOF. By Proposition 2.3 and the fact that U is an open neighborhood of x, we
have U c n{W | W is an open neighborhood of x} C U. Therefore we have the result.
O

THEOREM 2.5. Let U be a nonempty open set. Then the following three conditions
are equivalent:

(1) U is a minimal open set.

(2) U c CI(S) for any nonempty subset S of U.

(3) CI(U) = CI(S) for any nonempty subset S of U.

PROOF. (1)=(2). Let S be any nonempty subset of U. By Proposition 2.3, for any
element x of U and any open neighborhood W of x, we have

S=UnScwWns. (2.2)

Then, we have WNS + & and hence x is an element of CI(S). It follows that U c CI(S).

(2)=(3). For any nonempty subset S of U, we have CI(S) c CI(U). On the other
hand, by (2), we see CI(U) c CI(CI(S)) = CI(S). Therefore we have C1(U) = CI(S) for
any nonempty subset S of U.

(3)=(1). Suppose that U is not a minimal open set. Then there exists a nonempty
open set V such that V ¢ U and hence there exists an element a € U such thata ¢ V.
Then we have Cl({a}) c V¢, the complement of V. It follows that Cl({a}) + Cl(U).

O

A subset M of a space (X, T) is called a pre-open set if M C IntCI(M). The family of
all pre-open sets in (X, 1) will be denoted by PO(X, 1), (cf. [2]).

A space (X, T) is called pre-Hausdorff if for each x, y € X, x # y there exist subsets
U,VePO(X,T)suchthatx e U, yeV,and UnV = Q.

THEOREM 2.6. Let U be a minimal open set. Then any nonempty subset S of U is a
pre-open set.

PROOF. By Theorem 2.5(2), we have IntU C IntCI(S). Since U is an open set, we
have S c U =Int(U) c IntCI(S). O
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THEOREM 2.7. Let U be a minimal open set and M a nonempty subset of X. If there
exists an open neighborhood W of M such that W c CI(MuU), then M US is a pre-open
set for any nonempty subset S of U.

PROOF. By Theorem 2.5(3), we have CI(MUS) = CI(M) UCI(S) = CI(M) uCl(U) =
CI(M U U). Since W c CI(Mu U) = CI(M U S) by assumption, we have Int(W) C
IntCI(M US). Since W is an open neighborhood of M, namely W is an open set such that
McW,wehave M c W =Int(W) c IntCl(MuUS).Moreover we have Int(U) c IntCl(Mu
U), for Int(U) = U c CI(U) c CI(M) uCl(U) = CI(M U U). Since U is an open set, we
have S c U = IntU c IntCl(M U U) = IntCI(M U S). Therefore MuS c IntCl(M U S).

O

COROLLARY 2.8. Let U be a minimal open set and M a nonempty subset of X. If there
exists an open neighborhood W of M such that W c CL(U), then MU S is a pre-open set
for any nonempty subset S of U.

PROOF. Byassumption, we have W c C1(M)uUCIl(U) =CI(MuU). So by Theorem 2.7,
we see that M US is a pre-open set. O

The condition of Theorem 2.7, namely W c CI(M U S), does not necessarily imply
the condition of Corollary 2.8, namely W c CI(S). We have the following example.

EXAMPLE 2.9. Let X = {a, b, c,d} with topology 0 = {J, {d},{a,b},{a,b,c},{a,b,d},
XL U={a,b} and M =W = {d}. Then W = {d} c Cl({a,b}u{d}) = ClI(MuU) and
W ={d} ¢ Cl({a,b}) = Cl(U).

THEOREM 2.10. Let U be a minimal open set and x an element of X — U. Then
WnU =@ orU CW for any open neighborhood W of x.

PROOF. Since W is an open set, we have the result by Lemma 2.2. O

COROLLARY 2.11. Let U be a minimal open set and x an element of X — U. Define
« = N{W | W is an open neighborhood of x}. Then Ux nU = & or U C Uy.

PROOF. If U c W for any open neighborhood W of x, then U c n{W | W is an open
neighborhood of x}. Therefore U C U,. Otherwise there exists an open neighborhood
W of x such that WnU = &. Then we have UNnUy = &. O

3. Finite open sets. In this section, we study some properties of minimal open sets
in finite open sets and locally finite spaces.

THEOREM 3.1. Let V be a nonempty finite open set. Then there exists at least one
(finite) minimal open set U such that U C V.

PROOF. If Vis aminimal open set, we may set U = V.If V is not a minimal open set,
then there exists an (finite) open set V; such that @ + V; ¢ V. If V; is a minimal open
set, we may set U = V7. If V7 is not a minimal open set, then there exists an (finite)
open set V» such that @ = V, ¢ V7 ¢ V. Continuing this process, we have a sequence
of open sets

VaviaVe---2Vi2---. (3.1)
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Since V is a finite set, this process repeats only finitely. Then, finally we get a minimal
open set U = V,, for some positive integer n. O

A topological space is said to be a locally finite space if each of its elements is
contained in a finite open set.

COROLLARY 3.2. Let X be a locally finite space and V a nonempty open set. Then
there exists at least one (finite) minimal open set U such that U C V.

PROOF. Since V is a nonempty set, there exists an element x of V. Since X is a
locally finite space, we have a finite open set V. such that x € V.. Since VNV, is a
finite open set, we get a minimal open set U such that U ¢ VNV, c V by Theorem 3.1.

O

THEOREM 3.3. Let Vi be an open set for any A € A and W a nonempty finite open
set. Then W n (NxeaVa) IS a finite open set.

PROOF. We see that there exists an integer n such that W N (NaeaVa) = W N
(N, Va,) and hence we have the result. O

THEOREM 3.4. Let V), be an open set for any A € A and W,, a nonempty finite open
set for any py € M. Let S = UyeyWy. Then SN (NaeaVa) is an open set.

PROOF. Since W, is a finite open set, by Theorem 3.3, we have W, N (NacaVa) is a
finite open set for any u € Jl. Since

SN (mAeAV/\) = (Uueﬂ/twu) N (mAeAVP\) = U,ueA/t(Wu n (mAeAV)\)): (3.2)

we have the result. O

COROLLARY 3.5 (see [1]). Any locally finite space is an Alexandroff space.

4. Applications. Let U be a nonempty finite open set. We see, by Lemma 2.2 and
Corollary 3.2, that there exists a positive integer k such that {U;,Us,..., Uy} is the set
of all minimal open sets in U. Then it satisfies the following two conditions:

@ UinUj= foranyi, jwithl <i, j<k,andi=+j.

(b) If U’ is a minimal open set in U, then there exists i with 1 < i < k such that
U’ =U;.

THEOREM 4.1. Let U be a nonempty finite open set which is not a minimal open
set. Let {U1,Us,...,U,} be the set of all minimal open sets in U and x an element of
U-(UyuUpU---UUy). Define Uy = N{W | W is an open neighborhood of x}. Then
there exists a positive integer i of {1,...,n} such that U; C Uy.

PROOF. Assume that U; ¢ U, for any positive integer i of {1,...,1n}. Then we have
U;nUy = @ for any minimal open set U; in U by Corollary 2.11. Since Uy is a nonempty
finite open set by Theorem 3.3, there exists a minimal open set U’ such that U’ c U, by
Theorem 3.1.Since U’ C U, C U,we have U’ is a minimal open setin U. By assumption,
we have U;NnU’ c U;nUy = & for any minimal open set U;. Therefore U’ + U; for any
positive integer i of {1,2,...,n}. This contradicts our assumption. O
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PROPOSITION 4.2. Let U be a nonempty finite open set which is not a minimal open
set. Let {U,U,...,U,} be the set of all minimal open sets in U and x an element of
U- (U vUpU---UUy). Then there exists a positive integer i of {1,...,n} such that
U; C Wy for any open neighborhood Wy of x.

PROOF. Since W, D Nn{W | W is an open neighborhood of x}, we have the result by
Theorem 4.1. O

THEOREM 4.3. Let U be a nonempty finite open set which is not a minimal open
set. Let {Uy,U»,...,Uyn} be the set of all minimal open sets in U and x an element of
U— (U uUzU---UUy). Then there exists a positive integer i of {1,...,n} such that x
is an element of C1(U;).

PROOF. By Proposition 4.2, there exists a positive integer i of {1,...,n} such that
U; C W for any open neighborhood W of x. Therefore U;nW > U; nU; + & for any
open neighborhood W of x. Therefore we have the result. O

The following result is a generalization of Theorem 2.5, when U is anonempty finite
open set.

THEOREM 4.4. Let U be a nonempty finite open set and U; a minimal open set in U
for eachie {1,2,...,n}. Then the following three conditions are equivalent:

(1) {U1,Us,...,Uy} is the set of all minimal open sets in U.

@)U cCl(S1uSu---US,) for any nonempty subsets S; of U; forie {1,2,...,n}.

3)CL(U) =Cl(S;US2U- - -USy) for any nonempty subsets S; of U; forie {1,2,...,n}.

PROOF. (1)=(2).If U is a minimal open set, then this is the result of Theorem 2.5(2).
Otherwise U is not a minimal open set. If x is any element of U — (Uyu U, U - - - UUy),
we have x € ClI(U;) uCl(Uz) U - - - UCL(Uy,) by Theorem 4.3. Therefore

UcCl(Uy)uCl(Uz)u---uCl(Uy,) =CL(S1)UCL(S2)u---uCl(Sy,)

4.1)
=Cl(S;USU---USy)

by Theorem 2.5(3).
(2)=(3). For any nonempty subset S; of U; with i € {1,2,...,n}, we have CI(S; uS, U
-+-USy,) C CI(U). On the other hand, by (2), we see

CL(U) cCL(C1(S1US2U-+-USy,)) =Cl(S;USU---US,). (4.2)

Therefore we have C1(U) = CI(S; US> U - - - US,,) for any nonempty subset S; of U; with
ie{l,2,...,n}.

(3)=(1). Suppose that V is a minimal open setin U and V + U; for i € {1,2,...,n}.
Then we have VN CI(U;) = @ for each i € {1,2,...,n}. It follows that any element of V
is not contained in ClI(U; u U, U - - - U Uy). This contradicts the condition (3) because
VcUcCCIU)=Cl(S1USuU---USy). O

Let U be a nonempty finite open set, {U;,Us,..., Uy} the set of all minimal open sets
in U and x; an element of U; for each i € {1,2,...,n}. Then we see that the set {x1, x>,
...,Xn} is a pre-open set by Theorem 4.4. Moreover, we have the following result.
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THEOREM 4.5. Let U be a nonempty finite open set and {U,,U>,...,Uy} the set of all
minimal open sets in U. Let S be any subset of U — (UyuU, U ---UUy,) and S; be any
nonempty subset of U; foreachic {1,2,...,n}. Then SUS; US> - - -US,, is a pre-open set.

PROOF. By Theorem 4.4(2), we have

UcCCl(S;USy---USy) CCl(SUS US> ---USy). (4.3)

Since U is an open set, then we have
SUSIUS,---US, cU=Int(U) cIntCl(SUS1US2---USy). (4.4)
Then we have the result. O

THEOREM 4.6. Let X be a locally finite space. If any minimal open set of X has two
elements at least, then X is a pre-Hausdor(f space.

PROOF. Let x, y be elements of X such that x + . Since X is a locally finite space,
there exists finite open sets U and V such that x € U and v € V. By Theorem 3.1, there
exists the set {Uy,Us,...,U,} of all minimal open sets in U and the set {V1,V>,...,Vj,}
of all minimal open sets in V.

CASE 1. If there exists i of {1,2,...,n} and j of {1,2,...,m} such that x € U; and
v €V}, then, by Theorem 2.6, {x} and {y} are disjoint pre-open sets which contains
x and 1y, respectively.

CASE 2. If there exists i of {1,2,...,n} such that x € U; and y ¢ V; for any j of
{1,2,...,m}, then we find an element y; of V; for each j such that {x} and {y,),
Y2,...,Ym} are pre-open sets and {x} N {y,y1,¥2,...,Yn} = @ by Theorems 2.6, 4.5
and the assumption.

CASE 3. If x ¢ U; for any i of {1,2,...,n} and y ¢ V; for any j of {1,2,...,m}, then
we find elements x; of U; and y; of V; for each i, j such that {x,x1,x2,...,x,} and
{v,¥1,¥2,...,Ym} are pre-open sets and {x,x1,X2,...,Xn} N {V, V1,Y2,..., YVm} = D
by Theorem 4.5 and the assumption. We remark that we use the assumption that any
minimal open set of X has at least two elements for the case U; = V; for some i and
Jj in the argument of cases (2) and (3).

Therefore X is a pre-Hausdorff space. O
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