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ABSTRACT. We consider the fuzzification of the notion of an n-fold implicative ideal, an
n-fold (weak) commutative ideal. We give characterizations of an n-fold fuzzy implicative
ideal. We establish an extension property for n-fold fuzzy commutative ideals.
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1. Introduction. Huang and Chen [1] introduced the notion of n-fold implicative
ideals and n-fold (weak) commutative ideals. The aim of this paper is to discuss the
fuzzification of n-fold implicative ideals, n-fold commutative ideals and »n-fold weak
commutative ideals. We show that every n-fold fuzzy implicative ideal is an n-fold
fuzzy positive implicative ideal, and so a fuzzy ideal, and give a condition for a fuzzy
ideal to be an n-fold fuzzy implicative ideal. Using the level set, we provide a charac-
terization of an n-fold fuzzy implicative ideal. We also give a condition for a fuzzy
ideal to be an n-fold fuzzy (weak) commutative ideal. We show that every n-fold fuzzy
positive implicative ideal which is an n-fold fuzzy weak commutative ideal is an n-fold
fuzzy implicative ideal. Finally, we establish an extension property for n-fold fuzzy
commutative ideals.

2. Preliminaries. We include some elementary aspects of BCK-algebras that are
necessary for this paper, and for more details we refer to [1, 2, 4, 5]. By a BCK-algebra
we mean an algebra (X;*,0) of type (2,0) satisfying the axioms:

@D ((xxy)*k(x*kz))*x(z*xy)=0,

D) (x*x(x*xy))*xy =0,

() xxx =0,

(IV) 0% x =0,

(V) xky=0and y*x =0imply x = y, for all x,y,z € X.

We can define a partial ordering < on X by x < vy if and only if x * y = 0. In any
BCK-algebra X, the following hold:

(P1) x*0=x,

P2) x*xy <x,

P3) (xxy)*kz=(x*z)*xy,

(P4) (xxz)x(y*xz)<x*xYy,

(P5) x <y implies x xz<y*xzand z*xy < z*x.

Throughout, X will always mean a BCK-algebra unless otherwise specified. A non-
empty subset I of X is called an ideal of X if it satisfies:

(I1) 0 €1,
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(I12) xxy eland y €l imply x €1.

A nonempty subset I of X is said to be an implicative ideal of X if it satisfies:

(I1) 0 €1,

(I3) (x*(y*x))*xzelandz el imply x €1.

A nonempty subset I of X is said to be a commutative ideal of X if it satisfies:

(1) 01,

(I4) (xky)kxzelandzelimply x*x(y*x(y*xx)) €l

We now review some fuzzy logic concepts. A fuzzy set in a set X is a function
u:X —1[0,1]. Forafuzzysetuin X and t € [0,1] define U(u;t) to be the set U (u;t) :=
{xeX|ulx)=t}.

A fuzzy set uy in X is said to be a fuzzy ideal of X if

(F1) pu(0) = u(x) for all x € X,

(F2) p(x) =min{u(x*y),u(y)} forall x,y € X.

Note that every fuzzy ideal u of X is order reversing, that is, if x < y then u(x) >
u(y).

A fuzzy set u in X is called a fuzzy implicative ideal of X if it satisfies:

(F1) u(0) = u(x) for all x € X,

(F3) p(x) zmin{u((x*x(y*xx))*xz),u(z)} forall x,y,z € X.

A fuzzy set p in X is called a fuzzy commutative ideal of X if it satisfies:

(F1) pu(0) = u(x) for all x € X,

(F4) pu(x*(y*(y*xx))) =2min{u((x*y)*xz),u(z)} forall x,y,z € X.

3. n-fold fuzzy implicative ideals. For any elements x and y of a BCK-algebra X,

x * ™ denotes

(v (k) ky) sk )y (3.1)

in which y occurs n times. Huang and Chen [1] introduced the concept of n-fold
implicative ideals as follows.

DEFINITION 3.1 (see [1]). A subset A of X is called an n-fold implicative ideal of
X if

(I1) 0e€A,

(I5) (xx(y*xx"))*xze Aand z € A imply x € A for every x,y,z € X.

We consider the fuzzification of the concept of n-fold implicative ideal.

DEFINITION 3.2. A fuzzy set u in X is called an n-fold fuzzy implicative ideal of
X if

(F1) p(0) = u(x) for all x € X,

(F5) p(x)=min{u((x* (y*xm"))*xz),u(z)} for every x,y,z € X.

Notice that the 1-fold fuzzy implicative ideal is a fuzzy implicative ideal.

THEOREM 3.3. Every n-fold fuzzy implicative ideal is a fuzzy ideal.

PROOF. The condition (F2) follows from taking v = 0 in (F5). O

The following example shows that the converse of Theorem 3.3 may not be true.
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EXAMPLE 3.4. Let X = NuU {0}, where N is the set of natural numbers, in which the
operation x is defined by x * y = max{0,x — y} for all x,y € X. Then X is a BCK-
algebra (see [1, Example 1.3]). Let u be a fuzzy set in X given by pu(0) =ty > t; = u(x)
for all x(# 0) € X. Then u is a fuzzy ideal of X. But u is not a 2-fold fuzzy implicative
ideal of X because

u3) =ty <to=p(0) =min{u((3* (14%32))*0),u(0)}. (3.2)

We give a condition for a fuzzy ideal to be an n-fold fuzzy implicative ideal.

THEOREM 3.5. A fuzzy ideal u of X is n-fold fuzzy implicative if and only if u(x) =
u(x x (y*xxm")) forall x,y € X.

PROOF. Necessity is by taking z = 0 in (F5). Suppose that a fuzzy ideal u satisfies
the inequality p(x) > p(x * (y *xx")) for all x,y € X. Then

p(x) = p(xx (y*xx™)) =min{u((x* (y *x™)) *z),u(z)}. (3.3)

Hence u is an n-fold fuzzy implicative ideal of X. O

THEOREM 3.6. A fuzzy set y in X is an n-fold fuzzy implicative ideal of X if and
only if the nonempty level set U (u;t) of u is an n-fold implicative ideal of X for every
te[0,1].

PROOF. Assume that u is an n-fold fuzzy implicative ideal of X and U (u;t) # @ for
every t € [0,1]. Then there exists x € U(u;t). It follows from (F1) that u(0) > u(x) >t
so that 0 € U(y;t). Let x,y,z € X be such that (x % (y xx")) *xz € U(u;t) and
ze U(u;t). Then u((x* (y *xx™))*xz) >t and u(z) > t, which imply from (F5) that

p(x) zmin{u((x* (y*xx"))*z),u(z)} =t (3.4)

so that x € U(u;t). Therefore U(u;t) is an n-fold implicative ideal of X. Conversely,
suppose that U(u;t)(# @) is an n-fold implicative ideal of X for every t € [0,1]. For
any x € X, let u(x) =t. Then x € U(u;t). Since 0 € U(u;t), we get u(0) >t = u(x)
and so u(0) = u(x) for all x € X. Now assume that there exist a,b,c € X such that

u(a) <min{p((a*x (b*xa")) *xc),u(c)}. (3.5)
Selecting sop = (1/2)(u(a) +min{u((a* (bxa™)) *xc),u(c)}), then
u(a) < so <min{u((a*x (bxa"))*xc),u(c)}. (3.6)

It follows that (a x (b xa™)) xc € U(u;Sp), c € U(u;s0), and a ¢ U(u;Sso). This is a
contradiction. Hence u is an n-fold fuzzy implicative ideal of X. O

DEFINITION 3.7 (see [3]). A fuzzy set u in X is called an n-fold fuzzy positive im-
plicative ideal of X if

(F1) p(0) = u(x) for all x € X,

(F6) p(x*y™) =min{u((x*y"*1)*z),u(z)} forall x,y,z € X.
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LEMMA 3.8 (see [3, Theorem 3.13]). Let u be a fuzzy set in X. Then u is an n-fold
fuzzy positive implicative ideal of X if and only if the nonempty level set U (u;t) of u is
an n-fold positive implicative ideal of X for every t € [0,1].

LEMMA 3.9 (see [1, Theorem 2.5]). Every n-fold implicative ideal is an n-fold positive
implicative ideal.

Using Theorem 3.6 and Lemmas 3.8 and 3.9, we have the following theorem.

THEOREM 3.10. Every n-fold fuzzy implicative ideal is an n-fold fuzzy positive im-
plicative ideal.

4. n-fold fuzzy commutative ideals

DEFINITION 4.1 (see [1]). A subset A of X is called an n-fold commutative ideal
of X if

(I1) 0eA,

(I6) (xxy)kzeAand ze€ Aimply xx (y *x (y*xx")) € Aforall x,y,ze€ X.

A subset A of X is called an n-fold weak commutative ideal of X if

I1) 0e€ A,

(I7) (x*x(xxy"))*xzeAandze Aimply y* (y*x) € Aforall x,y,z € X.

We consider the fuzzification of n-fold (weak) commutative ideals as follows.

DEFINITION 4.2. A fuzzy set u in X is called an n-fold fuzzy commutative ideal
of X if

(F1) p(0) = u(x) for all x € X,

(F7) p(xx(y*x(y*xxm))) =zmin{u((x*xy)*xz),u(z)} forall x,y,z e X.

A fuzzy set u in X is called an n-fold fuzzy weak commutative ideal of X if

(F1) p(0) = u(x) for all x € X,

(F8) p(y*x(y*xx)) =min{u((x* (x*xy"))xz),u(z)} forall x,y,z € X.

Note that the 1-fold fuzzy commutative ideal is a fuzzy commutative ideal. Putting
v =0 and y = x in (F7) and (F8), respectively, we know that every n-fold fuzzy com-
mutative (or fuzzy weak commutative) ideal is a fuzzy ideal.

THEOREM 4.3. Let u be a fuzzy ideal of X. Then
(i) u is an n-fold fuzzy commutative ideal of X if and only if

plx* (y*x (y*x"))) =zulx*y) Vx,ye€X. (4.1)
(ii) p is an n-fold fuzzy weak commutative ideal of X if and only if
u(yx(yxx)) =u(x*x(x*xy")) Vx,yeX. (4.2)

PROOF. The proof is straightforward. O

LEMMA 4.4 (see [3, Theorem 3.12]). A fuzzy set u in X is an n-fold fuzzy positive
implicative ideal of X if and only if u is a fuzzy ideal of X in which the following
inequality holds:

(F9) p((xxz™)x(y*xz")) =u((x*xy)*xz") Vx,y,ze X.
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THEOREM 4.5. If u is both an n-fold fuzzy positive implicative ideal and an n-fold
fuzzy weak commutative ideal of X, then it is an n-fold fuzzy implicative ideal of X.

PROOF. Let x,y € X. Using Theorem 4.3(ii), Lemma 4.4, (P3), and (III), we have

plx o (o (yxx™))) = pu((y*x™) * (7 *x™) % x™))
> p((y* (y*x™)) xx") 43)
=u((y*x")x (¥ *x"))
= u(0).

It follows from (F1) and (F2) that

p(x) = min {p(xx (xk (v x"))),u(xx (v xx"))}
=min {p(0), u(x * (¥ xx"))} 4.4)
=p(x* (yxx"))
so from Theorem 3.5, u is an n-fold fuzzy implicative ideal of X. O

THEOREM 4.6 (extension property for n-fold fuzzy commutative ideals). Let u
and v be fuzzy ideals of X such that u(0) = v(0) and u < v, that is, u(x) < v(x)
for all x € X. If u is an n-fold fuzzy commutative ideal of X, then so is v.

PROOF. Let x,y € X. Taking u = x * (x * y), we have

v(0) = pu(0) = p(u*y)
< p(u* (y*(y*xu")))
sv(ux (yx(y*u))) (4.5)
=v((x*x (x*xx))* (¥ * (y*xu")))
=v((xx (y* (y*xu"))) * (x*y)).

Since x x (y * (¥ *xx™)) < x* (¥ * (¥ *u")) and since v is order reversing, it fol-
lows that

v(xk (yx(y*x"))) =v(xx (y* (y*u™)))
>min {v((x* (y* (¥ *u"))) * (x*y)),v(ix*xy)}

4.6
> min{v(0),v(x*xy)} (4.6)
=v(x*xy).
Hence, by Theorem 4.3(i), v is an n-fold fuzzy commutative ideal of X. O
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