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Abstract. We study the construction and the convergence of the Ishikawa iterative pro-
cess with errors for nonexpansive mappings in uniformly convex Banach spaces. Some
recent corresponding results are generalized.
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1. Introduction. Let C be a closed convex subset of a Banach space X and T : C → C
be a nonexpansive mapping (i.e., ‖Tx−Ty‖ ≤ ‖x−y‖ for all x,y in C). Recently, Deng

and Li [1] introduced an Ishikawa iteration sequence with errors as follows: for any

given x0 ∈ C
xn+1 =αnxn+βnTyn+γnun,

yn = α̂nxn+ β̂nTxn+ γ̂nvn, n≥ 0.
(1.1)

Here {un} and {vn} are two bounded sequences in C , and {αn}, {βn}, {γn}, {α̂n},
{β̂n}, and {γ̂n} are six sequences in [0,1] satisfying the conditions

αn+βn+γn = α̂n+ β̂n+ γ̂n = 1 ∀n≥ 0. (1.2)

Remark 1.1. Note that the Ishikawa iteration processes [2] is a special case of the

Ishikawa iteration processes with errors.

Deng and Li [1] obtained the following result. Let C be a closed convex subset of

a uniformly convex Banach space X. If for any initial guess x0 ∈ C , {xn} defined by

(1.1), with the restrictions that
∑∞
n=0αnβn =∞,

∑∞
n=0αnβnβ̂n <∞,

∑∞
n=0γn <∞, and∑∞

n=0 γ̂n <∞, then limn→∞‖xn−Txn‖ = 0. So Deng and Li extended the result of Tan

and Xu [6].

In this paper, we first extend and unify [1, Theorem 1] and [6, Lemma 3]. Then, we

generalize [1, Theorems 2, 3, and 4] and [6, Theorems 1, 2, and 3].

2. Lemmas

Lemma 2.1 (see [6]). Suppose that {an} and {bn} are two sequences of nonnegative

numbers such that an+1 ≤ an+bn for all n≥ 1. If
∑∞
n=1bn converges, then limn→∞an

exists.
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Lemma 2.2 (see [1]). Let C be a closed convex subset of a Banach space X, T : C → C
a nonexpansive mapping. Then for any initial guess x0 in C , {xn} defined by (1.1),

∥∥xn+1−p
∥∥≤ ∥∥xn−p∥∥+γn∥∥un−p∥∥+βnγ̂n∥∥vn−p∥∥ (2.1)

for all n≥ 1 and for all p ∈ F(T), where F(T) denotes the set of fixed point of T .

Remark 2.3. Since the sequences {un} and {vn} are bounded, so the sequences

{‖un−p‖} and {‖vn−p‖} are bounded too, then limn→∞‖xn−p‖ exists by Lemma 2.1.

Lemma 2.4 (see [7]). Let C be a bounded closed convex subset of a uniformly con-

vex Banach space X. Suppose that T : C → C is a nonexpansive mapping. If yn → y
weakly (yn, y ∈ C , n = 1,2, . . .), then there exists a strictly increasing convex function

g :R+ →R+ with g(0)= 0 such that

g
(‖y−Ty‖)≤ liminf

n→∞
∥∥yn−Tyn∥∥. (2.2)

3. Main results

Theorem 3.1. Let C be a closed convex subset of a uniformly convex Banach space

X, T : C → C a nonexpansive mapping with a fixed point. If for any initial guess x0 in C ,

{xn} defined by (1.1), with the restrictions that
∑∞
n=0γn <∞,

∑∞
n=0 γ̂n <∞, and there

exists a subsequence {nk} of {n} such that
∑∞
k=0αnkβnk = ∞,

∑∞
k=0αnkβnkβ̂nk < ∞.

Then liminfn→∞‖xn−Txn‖ = 0.

Proof. Since T has a fixed point, and by Lemma 2.2, we may set

M = sup
n≥0

{∥∥Txn−un∥∥,∥∥xn−un∥∥,∥∥Tyn−vn∥∥,∥∥yn−un∥∥,∥∥xn−vn∥∥}. (3.1)

If liminfn→∞‖xn − Txn‖ > 0, we may assume that liminfn→∞‖xn − p‖ > 0, where

p ∈ F(T). Since ‖Tyn−p‖ ≤ ‖xn−p‖+ γ̂nM , we obtain

∥∥xn+1−p
∥∥≤ ∥∥αn(xn−p)+βn(Tyn−p)∥∥+γnM
= (αn+βn)

∥∥∥∥ αn
αn+βn

(
xn−p

)+ βn
αn+βn

(
Tyn−p

)∥∥∥∥+γnM

≤
[

1−2
αnβn(
αn+βn

)2δX

( ∥∥xn−Tyn∥∥∥∥xn−p∥∥+ γ̂nM
)](∥∥xn−p∥∥+ γ̂nM)+γnM

≤
[

1−2αnβnδX

( ∥∥xn−Tyn∥∥∥∥xn−p∥∥+ γ̂nM
)]∥∥xn−p∥∥+(γ̂n+γn)M,

(3.2)

where δX is the modulus of convexity of the uniformly convex Banach space X. Setting

Dn = 1−2αnβnδX

( ∥∥xn−Tyn∥∥∥∥xn−p∥∥+ γ̂nM
)
. (3.3)



ISHIKAWA ITERATION PROCESS WITH ERRORS . . . 415

Thus for all n≥ 0, 0≤Dn ≤ 1. From (3.2), for all k≥ 0, we have

∥∥xnk+1−p
∥∥

≤Dnk+1−1

∥∥xnk+1−1−p
∥∥+(γ̂nk+1−1+γnk+1−1

)
M

≤Dnk+1−1Dnk+1−2 ···Dnk+1Dnk
∥∥xnk−p∥∥+

nk+1−nk∑
i=1

(
γ̂nk+1−i+γnk+1−i

)
M

≤Dnk
∥∥xnk−p∥∥+

nk+1−nk∑
i=1

(
γ̂nk+1−i+γnk+1−i

)
M

≤
∥∥xnk−p∥∥

[
1−2αnkβnkδX

( ∥∥xnk−Tynk∥∥∥∥xnk−p∥∥+γ̂nM
)]
+
nk+1−nk∑
i=1

(
γ̂nk+1−i+γnk+1−i

)
M.

(3.4)

Thus,

k∑
i=0

2αniβniδX

( ∥∥xni−Tyni∥∥∥∥xni−p∥∥+ γ̂niM
)∥∥xni−p∥∥

≤
∥∥xn0−p

∥∥−∥∥xnk+1−p
∥∥+

nk+1−1∑
i=0

(
γ̂i+γi

)
M.

(3.5)

It follows that
∞∑
i=0

αniβniδX

( ∥∥xni−Tyni∥∥∥∥xni−p∥∥+ γ̂niM
)
<+∞. (3.6)

By condition
∑∞
i=0αniβni β̂ni <+∞, we have

∞∑
i=0

αniβni

[
δX

( ∥∥xni−Tyni∥∥∥∥xni−p∥∥+ γ̂niM
)
+ β̂ni

]
<+∞. (3.7)

It follows that

liminf
k→∞

[
δX

( ∥∥xnk−Tynk∥∥∥∥xnk−p∥∥+ γ̂nkM
)
+ β̂nk

]
= 0 (3.8)

since
∑∞
k=0αnkβnk =∞. Hence, there is a sequence {nki} ⊂ {nk} such that

lim
i→∞

∥∥∥xnki −Tynki
∥∥∥= 0, lim

i→∞
β̂nki = 0. (3.9)

On the other hand, we have

∥∥∥xnki −Txnki
∥∥∥≤ ∥∥∥xnki −Tynki

∥∥∥+∥∥∥Txnki −Tynki
∥∥∥

≤
∥∥∥xnki −Tynki

∥∥∥+ β̂nki
∥∥∥xnki −Txnki

∥∥∥+ γ̂nkiM.
(3.10)

Setting i→∞ in (3.10), it follows from (3.9) that

lim
i→∞

∥∥∥xnki −Txnki
∥∥∥= 0. (3.11)
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Thus,

liminf
n→∞

∥∥xn−Txn∥∥= 0. (3.12)

This completes the proof.

Recall that a Banach space X is said to satisfy Opial’s condition [4] if the condition

xn→ x0 weakly implies

limsup
n→∞

∥∥xn−x0

∥∥< limsup
n→∞

∥∥xn−y∥∥ ∀y 	= x0. (3.13)

A mapping T : C → C with a nonempty fixed points set F(T) in C will be said to

satisfy Condition A in [5] if there is a nondecreasing function f : [0,∞)→ [0,∞) with

f(0) = 0, f(r) > 0 for r ∈ (0,∞), such that ‖x−Tx‖ ≥ f(d(x,F(T))) for all x ∈ C ,

where d(x,F(T))= inf{‖x−z‖ : z ∈ F(T)}.

Theorem 3.2. LetC be a bounded closed convex subset of a uniformly convex Banach

space X which satisfies Opial’s condition or whose norm is Fréchet differentiable. Let

T : C → C a nonexpansive mapping with a fixed point, and {xn} defined by (1.1), with

the restrictions that
∑∞
n=0γn <∞,

∑∞
n=0 γ̂n <∞, and for any subsequence {nk} of {n},∑∞

k=0αnkβnk =∞,
∑∞
k=0αnkβnkβ̂nk <∞, converges weakly to a fixed point of T .

By Theorem 3.1 and Lemma 2.4, we can prove Theorem 3.2 easily. The proof is

similar to that of [7, Theorem 3.1], so the details are omitted.

Let X,C,T , and {xn} be as in Theorem 3.1. Then we have the following theorem.

Theorem 3.3. If the range of C under T is contained in a compact subset of X, then

{xn} converges strongly to a fixed point of T .

Theorem 3.4. LetC be a bounded closed convex subset of a uniformly convex Banach

space X. If T satisfies Condition A, then {xn} converges strongly to a fixed point of T .

Proof. Since C is a bounded closed convex subset of a uniformly convex

Banach space X, then T has a fixed point [3]. So F(T) is nonempty. It follows from

Theorem 3.1 and Condition A, that there exists a subsequence {xnk} of {xn} such

that limk→∞f(d(xnk,F(T))) = 0, therefore we have limk→∞d(xnk,F(T)) = 0. So we

can choose a subsequence {xnki } of {xnk} and some sequence {pi} in F(T) such that

‖xnki −pi‖< 2−i for all integers k≥ 0.

We denote supn{‖un − p‖,‖vn − p‖} by M and (γnki + βnki γ̂nki )M by λnki . By

Lemma 2.1 we have

∥∥pi+1−pi
∥∥≤ ∥∥∥xnki+1

−pi+1

∥∥∥+∥∥∥xnki+1
−pi

∥∥∥
≤ 2−(i+1)+

∥∥∥xnki+1
−1−pi

∥∥∥+λnki+1
−1

≤ 2−(i+1)+
∥∥∥xnki+1

−2−pi
∥∥∥+λnki+1

−2+λnki+1
−1
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≤ 2−(i+1)+
∥∥∥xnki −pi

∥∥∥+
nki+1

−1∑
j=nki

λj

≤ 2−i+1+
nki+1

−1∑
j=nki

λj.

(3.14)

It follows, from (3.14) and
∑
j λj is convergent, that {pi} is a Cauchy sequence there-

fore converges strongly to a point p ∈ F(T), since F(T) is closed. We have seen that

{xnki } converges strongly to p, so does {xn} by the Remark 2.3. This completes the

proof.

Remark 3.5. The above three theorems generalize [6, Theorems 1, 2, and 3] and

[1, Theorems 2, 3, and 4], respectively.
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