

ISHIKAWA ITERATION PROCESS WITH ERRORS FOR NONEXPANSIVE MAPPINGS

JIALIN HUANG

(Received 16 June 2000)

ABSTRACT. We study the construction and the convergence of the Ishikawa iterative process with errors for nonexpansive mappings in uniformly convex Banach spaces. Some recent corresponding results are generalized.

2000 Mathematics Subject Classification. 47H10, 40A05.

1. Introduction. Let C be a closed convex subset of a Banach space X and $T : C \rightarrow C$ be a nonexpansive mapping (i.e., $\|Tx - Ty\| \leq \|x - y\|$ for all x, y in C). Recently, Deng and Li [1] introduced an Ishikawa iteration sequence with errors as follows: for any given $x_0 \in C$

$$\begin{aligned} x_{n+1} &= \alpha_n x_n + \beta_n T y_n + \gamma_n u_n, \\ y_n &= \hat{\alpha}_n x_n + \hat{\beta}_n T x_n + \hat{\gamma}_n v_n, \quad n \geq 0. \end{aligned} \tag{1.1}$$

Here $\{u_n\}$ and $\{v_n\}$ are two bounded sequences in C , and $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\}$, $\{\hat{\alpha}_n\}$, $\{\hat{\beta}_n\}$, and $\{\hat{\gamma}_n\}$ are six sequences in $[0, 1]$ satisfying the conditions

$$\alpha_n + \beta_n + \gamma_n = \hat{\alpha}_n + \hat{\beta}_n + \hat{\gamma}_n = 1 \quad \forall n \geq 0. \tag{1.2}$$

REMARK 1.1. Note that the Ishikawa iteration processes [2] is a special case of the Ishikawa iteration processes with errors.

Deng and Li [1] obtained the following result. Let C be a closed convex subset of a uniformly convex Banach space X . If for any initial guess $x_0 \in C$, $\{x_n\}$ defined by (1.1), with the restrictions that $\sum_{n=0}^{\infty} \alpha_n \beta_n = \infty$, $\sum_{n=0}^{\infty} \alpha_n \beta_n \hat{\beta}_n < \infty$, $\sum_{n=0}^{\infty} \gamma_n < \infty$, and $\sum_{n=0}^{\infty} \hat{\gamma}_n < \infty$, then $\lim_{n \rightarrow \infty} \|x_n - Tx_n\| = 0$. So Deng and Li extended the result of Tan and Xu [6].

In this paper, we first extend and unify [1, Theorem 1] and [6, Lemma 3]. Then, we generalize [1, Theorems 2, 3, and 4] and [6, Theorems 1, 2, and 3].

2. Lemmas

LEMMA 2.1 (see [6]). *Suppose that $\{a_n\}$ and $\{b_n\}$ are two sequences of nonnegative numbers such that $a_{n+1} \leq a_n + b_n$ for all $n \geq 1$. If $\sum_{n=1}^{\infty} b_n$ converges, then $\lim_{n \rightarrow \infty} a_n$ exists.*

LEMMA 2.2 (see [1]). *Let C be a closed convex subset of a Banach space X , $T : C \rightarrow C$ a nonexpansive mapping. Then for any initial guess x_0 in C , $\{x_n\}$ defined by (1.1),*

$$\|x_{n+1} - p\| \leq \|x_n - p\| + \gamma_n \|u_n - p\| + \beta_n \hat{\gamma}_n \|v_n - p\| \quad (2.1)$$

for all $n \geq 1$ and for all $p \in F(T)$, where $F(T)$ denotes the set of fixed point of T .

REMARK 2.3. Since the sequences $\{u_n\}$ and $\{v_n\}$ are bounded, so the sequences $\{\|u_n - p\|\}$ and $\{\|v_n - p\|\}$ are bounded too, then $\lim_{n \rightarrow \infty} \|x_n - p\|$ exists by Lemma 2.1.

LEMMA 2.4 (see [7]). *Let C be a bounded closed convex subset of a uniformly convex Banach space X . Suppose that $T : C \rightarrow C$ is a nonexpansive mapping. If $\gamma_n \rightarrow \gamma$ weakly ($\gamma_n, \gamma \in C$, $n = 1, 2, \dots$), then there exists a strictly increasing convex function $g : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ with $g(0) = 0$ such that*

$$g(\|\gamma - T\gamma\|) \leq \liminf_{n \rightarrow \infty} \|\gamma_n - T\gamma_n\|. \quad (2.2)$$

3. Main results

THEOREM 3.1. *Let C be a closed convex subset of a uniformly convex Banach space X , $T : C \rightarrow C$ a nonexpansive mapping with a fixed point. If for any initial guess x_0 in C , $\{x_n\}$ defined by (1.1), with the restrictions that $\sum_{n=0}^{\infty} \gamma_n < \infty$, $\sum_{n=0}^{\infty} \hat{\gamma}_n < \infty$, and there exists a subsequence $\{n_k\}$ of $\{n\}$ such that $\sum_{k=0}^{\infty} \alpha_{n_k} \beta_{n_k} = \infty$, $\sum_{k=0}^{\infty} \alpha_{n_k} \beta_{n_k} \hat{\beta}_{n_k} < \infty$. Then $\liminf_{n \rightarrow \infty} \|x_n - Tx_n\| = 0$.*

PROOF. Since T has a fixed point, and by Lemma 2.2, we may set

$$M = \sup_{n \geq 0} \{\|Tx_n - u_n\|, \|x_n - u_n\|, \|Ty_n - v_n\|, \|\gamma_n - u_n\|, \|x_n - v_n\|\}. \quad (3.1)$$

If $\liminf_{n \rightarrow \infty} \|x_n - Tx_n\| > 0$, we may assume that $\liminf_{n \rightarrow \infty} \|x_n - p\| > 0$, where $p \in F(T)$. Since $\|Ty_n - p\| \leq \|x_n - p\| + \hat{\gamma}_n M$, we obtain

$$\begin{aligned} \|x_{n+1} - p\| &\leq \|\alpha_n(x_n - p) + \beta_n(Ty_n - p)\| + \gamma_n M \\ &= (\alpha_n + \beta_n) \left\| \frac{\alpha_n}{\alpha_n + \beta_n} (x_n - p) + \frac{\beta_n}{\alpha_n + \beta_n} (Ty_n - p) \right\| + \gamma_n M \\ &\leq \left[1 - 2 \frac{\alpha_n \beta_n}{(\alpha_n + \beta_n)^2} \delta_X \left(\frac{\|x_n - Ty_n\|}{\|x_n - p\| + \hat{\gamma}_n M} \right) \right] (\|x_n - p\| + \hat{\gamma}_n M) + \gamma_n M \quad (3.2) \\ &\leq \left[1 - 2 \alpha_n \beta_n \delta_X \left(\frac{\|x_n - Ty_n\|}{\|x_n - p\| + \hat{\gamma}_n M} \right) \right] \|x_n - p\| + (\hat{\gamma}_n + \gamma_n) M, \end{aligned}$$

where δ_X is the modulus of convexity of the uniformly convex Banach space X . Setting

$$D_n = 1 - 2 \alpha_n \beta_n \delta_X \left(\frac{\|x_n - Ty_n\|}{\|x_n - p\| + \hat{\gamma}_n M} \right). \quad (3.3)$$

Thus for all $n \geq 0$, $0 \leq D_n \leq 1$. From (3.2), for all $k \geq 0$, we have

$$\begin{aligned}
 & \|x_{n_{k+1}} - p\| \\
 & \leq D_{n_{k+1}-1} \|x_{n_{k+1}-1} - p\| + (\hat{y}_{n_{k+1}-1} + y_{n_{k+1}-1})M \\
 & \leq D_{n_{k+1}-1} D_{n_{k+1}-2} \cdots D_{n_k} D_{n_k} \|x_{n_k} - p\| + \sum_{i=1}^{n_{k+1}-n_k} (\hat{y}_{n_{k+1}-i} + y_{n_{k+1}-i})M \\
 & \leq D_{n_k} \|x_{n_k} - p\| + \sum_{i=1}^{n_{k+1}-n_k} (\hat{y}_{n_{k+1}-i} + y_{n_{k+1}-i})M \\
 & \leq \|x_{n_k} - p\| \left[1 - 2\alpha_{n_k} \beta_{n_k} \delta_X \left(\frac{\|x_{n_k} - T\gamma_{n_k}\|}{\|x_{n_k} - p\| + \hat{y}_n M} \right) \right] + \sum_{i=1}^{n_{k+1}-n_k} (\hat{y}_{n_{k+1}-i} + y_{n_{k+1}-i})M.
 \end{aligned} \tag{3.4}$$

Thus,

$$\begin{aligned}
 & \sum_{i=0}^k 2\alpha_{n_i} \beta_{n_i} \delta_X \left(\frac{\|x_{n_i} - T\gamma_{n_i}\|}{\|x_{n_i} - p\| + \hat{y}_{n_i} M} \right) \|x_{n_i} - p\| \\
 & \leq \|x_{n_0} - p\| - \|x_{n_{k+1}} - p\| + \sum_{i=0}^{n_{k+1}-1} (\hat{y}_i + y_i)M.
 \end{aligned} \tag{3.5}$$

It follows that

$$\sum_{i=0}^{\infty} \alpha_{n_i} \beta_{n_i} \delta_X \left(\frac{\|x_{n_i} - T\gamma_{n_i}\|}{\|x_{n_i} - p\| + \hat{y}_{n_i} M} \right) < +\infty. \tag{3.6}$$

By condition $\sum_{i=0}^{\infty} \alpha_{n_i} \beta_{n_i} \hat{\beta}_{n_i} < +\infty$, we have

$$\sum_{i=0}^{\infty} \alpha_{n_i} \beta_{n_i} \left[\delta_X \left(\frac{\|x_{n_i} - T\gamma_{n_i}\|}{\|x_{n_i} - p\| + \hat{y}_{n_i} M} \right) + \hat{\beta}_{n_i} \right] < +\infty. \tag{3.7}$$

It follows that

$$\liminf_{k \rightarrow \infty} \left[\delta_X \left(\frac{\|x_{n_k} - T\gamma_{n_k}\|}{\|x_{n_k} - p\| + \hat{y}_{n_k} M} \right) + \hat{\beta}_{n_k} \right] = 0 \tag{3.8}$$

since $\sum_{k=0}^{\infty} \alpha_{n_k} \beta_{n_k} = \infty$. Hence, there is a sequence $\{n_{k_i}\} \subset \{n_k\}$ such that

$$\lim_{i \rightarrow \infty} \|x_{n_{k_i}} - T\gamma_{n_{k_i}}\| = 0, \quad \lim_{i \rightarrow \infty} \hat{\beta}_{n_{k_i}} = 0. \tag{3.9}$$

On the other hand, we have

$$\begin{aligned}
 \|x_{n_{k_i}} - T x_{n_{k_i}}\| & \leq \|x_{n_{k_i}} - T\gamma_{n_{k_i}}\| + \|T x_{n_{k_i}} - T\gamma_{n_{k_i}}\| \\
 & \leq \|x_{n_{k_i}} - T\gamma_{n_{k_i}}\| + \hat{\beta}_{n_{k_i}} \|x_{n_{k_i}} - T x_{n_{k_i}}\| + \hat{y}_{n_{k_i}} M.
 \end{aligned} \tag{3.10}$$

Setting $i \rightarrow \infty$ in (3.10), it follows from (3.9) that

$$\lim_{i \rightarrow \infty} \|x_{n_{k_i}} - T x_{n_{k_i}}\| = 0. \tag{3.11}$$

Thus,

$$\liminf_{n \rightarrow \infty} \|x_n - Tx_n\| = 0. \quad (3.12)$$

This completes the proof. \square

Recall that a Banach space X is said to satisfy Opial's condition [4] if the condition $x_n \rightarrow x_0$ weakly implies

$$\limsup_{n \rightarrow \infty} \|x_n - x_0\| < \limsup_{n \rightarrow \infty} \|x_n - y\| \quad \forall y \neq x_0. \quad (3.13)$$

A mapping $T : C \rightarrow C$ with a nonempty fixed points set $F(T)$ in C will be said to satisfy Condition A in [5] if there is a nondecreasing function $f : [0, \infty) \rightarrow [0, \infty)$ with $f(0) = 0$, $f(r) > 0$ for $r \in (0, \infty)$, such that $\|x - Tx\| \geq f(d(x, F(T)))$ for all $x \in C$, where $d(x, F(T)) = \inf \{\|x - z\| : z \in F(T)\}$.

THEOREM 3.2. *Let C be a bounded closed convex subset of a uniformly convex Banach space X which satisfies Opial's condition or whose norm is Fréchet differentiable. Let $T : C \rightarrow C$ a nonexpansive mapping with a fixed point, and $\{x_n\}$ defined by (1.1), with the restrictions that $\sum_{n=0}^{\infty} \gamma_n < \infty$, $\sum_{n=0}^{\infty} \hat{\gamma}_n < \infty$, and for any subsequence $\{n_k\}$ of $\{n\}$, $\sum_{k=0}^{\infty} \alpha_{n_k} \beta_{n_k} = \infty$, $\sum_{k=0}^{\infty} \alpha_{n_k} \beta_{n_k} \hat{\beta}_{n_k} < \infty$, converges weakly to a fixed point of T .*

By [Theorem 3.1](#) and [Lemma 2.4](#), we can prove [Theorem 3.2](#) easily. The proof is similar to that of [7, Theorem 3.1], so the details are omitted.

Let X, C, T , and $\{x_n\}$ be as in [Theorem 3.1](#). Then we have the following theorem.

THEOREM 3.3. *If the range of C under T is contained in a compact subset of X , then $\{x_n\}$ converges strongly to a fixed point of T .*

THEOREM 3.4. *Let C be a bounded closed convex subset of a uniformly convex Banach space X . If T satisfies Condition A, then $\{x_n\}$ converges strongly to a fixed point of T .*

PROOF. Since C is a bounded closed convex subset of a uniformly convex Banach space X , then T has a fixed point [3]. So $F(T)$ is nonempty. It follows from [Theorem 3.1](#) and Condition A, that there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\lim_{k \rightarrow \infty} f(d(x_{n_k}, F(T))) = 0$, therefore we have $\lim_{k \rightarrow \infty} d(x_{n_k}, F(T)) = 0$. So we can choose a subsequence $\{x_{n_{k_i}}\}$ of $\{x_{n_k}\}$ and some sequence $\{p_i\}$ in $F(T)$ such that $\|x_{n_{k_i}} - p_i\| < 2^{-i}$ for all integers $k \geq 0$.

We denote $\sup_n \{\|u_n - p\|, \|v_n - p\|\}$ by M and $(\gamma_{n_{k_i}} + \beta_{n_{k_i}} \hat{\gamma}_{n_{k_i}})M$ by $\lambda_{n_{k_i}}$. By [Lemma 2.1](#) we have

$$\begin{aligned} \|p_{i+1} - p_i\| &\leq \|x_{n_{k_{i+1}}} - p_{i+1}\| + \|x_{n_{k_{i+1}}} - p_i\| \\ &\leq 2^{-(i+1)} + \|x_{n_{k_{i+1}}-1} - p_i\| + \lambda_{n_{k_{i+1}}-1} \\ &\leq 2^{-(i+1)} + \|x_{n_{k_{i+1}}-2} - p_i\| + \lambda_{n_{k_{i+1}}-2} + \lambda_{n_{k_{i+1}}-1} \end{aligned}$$

$$\begin{aligned}
&\leq 2^{-(i+1)} + \|x_{n_{k_i}} - p_i\| + \sum_{j=n_{k_i}}^{n_{k_{i+1}}-1} \lambda_j \\
&\leq 2^{-i+1} + \sum_{j=n_{k_i}}^{n_{k_{i+1}}-1} \lambda_j.
\end{aligned} \tag{3.14}$$

It follows, from (3.14) and $\sum_j \lambda_j$ is convergent, that $\{p_i\}$ is a Cauchy sequence therefore converges strongly to a point $p \in F(T)$, since $F(T)$ is closed. We have seen that $\{x_{n_{k_i}}\}$ converges strongly to p , so does $\{x_n\}$ by the Remark 2.3. This completes the proof. \square

REMARK 3.5. The above three theorems generalize [6, Theorems 1, 2, and 3] and [1, Theorems 2, 3, and 4], respectively.

REFERENCES

- [1] L. Deng and S. Li, *Ishikawa iteration process with errors for nonexpansive mappings in uniformly convex Banach spaces*, Int. J. Math. Math. Sci. **24** (2000), no. 1, 49–53. [CMP 1773 969](#). [Zbl 958.47029](#).
- [2] S. Ishikawa, *Fixed points by a new iteration method*, Proc. Amer. Math. Soc. **44** (1974), 147–150. [MR 49#1243](#). [Zbl 286.47036](#).
- [3] W. A. Kirk, *A fixed point theorem for mappings which do not increase distances*, Amer. Math. Monthly **72** (1965), 1004–1006. [MR 32#6436](#). [Zbl 141.32402](#).
- [4] Z. Opial, *Weak convergence of the sequence of successive approximations for nonexpansive mappings*, Bull. Amer. Math. Soc. **73** (1967), 591–597. [MR 35#2183](#). [Zbl 179.19902](#).
- [5] H. F. Senter and W. G. Dotson, Jr., *Approximating fixed points of nonexpansive mappings*, Proc. Amer. Math. Soc. **44** (1974), 375–380. [MR 49#11333](#). [Zbl 299.47032](#).
- [6] K. K. Tan and H. K. Xu, *Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process*, J. Math. Anal. Appl. **178** (1993), no. 2, 301–308. [MR 94g:47076](#). [Zbl 895.47048](#).
- [7] L.-C. Zeng, *A note on approximating fixed points of nonexpansive mappings by the Ishikawa iteration process*, J. Math. Anal. Appl. **226** (1998), no. 1, 245–250. [MR 99g:47138](#). [Zbl 916.47047](#).

JIALIN HUANG: DEPARTMENT OF MATHEMATICS, YIBIN TEACHER'S COLLEGE, YIBIN 644007, CHINA

E-mail address: jlhuang@btamail.net.cn

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk