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1. Introduction. In [4], Hu and Li introduced the notion of BCH-algebras which

are a generalization of BCK/BCI-algebras. In 1965, Zadeh [6] introduced the concept

of fuzzy subsets. Since then several researchers have applied this notion to various

mathematical disciplines. Jun [5] applied it to BCH-algebras, and he considered the

fuzzification of ideals and filters in BCH-algebras. In this paper, we introduce the

notion of a fuzzy dot subalgebra of a BCH-algebra as a generalization of a fuzzy

subalgebra of a BCH-algebra, and then we investigate several basic properties related

to fuzzy dot subalgebras.

2. Preliminaries. A BCH-algebra is an algebra (X,∗,0) of type (2,0) satisfying the

following conditions:

(i) x∗x = 0,

(ii) x∗y = 0=y∗x implies x =y ,

(iii) (x∗y)∗z = (x∗z)∗y for all x,y,z ∈X.

In any BCH-algebra X, the following hold (see [2]):

(P1) x∗0= x,

(P2) x∗0= 0 implies x = 0,

(P3) 0∗(x∗y)= (0∗x)∗(0∗y).
A BCH-algebra X is said to be medial if x∗(x∗y)=y for all x,y ∈X. A nonempty

subset S of a BCH-algebra X is called a subalgebra of X if x∗y ∈ S whenever x,y ∈
S. A map f from a BCH-algebra X to a BCH-algebra Y is called a homomorphism if

f(x∗y)= f(x)∗f(y) for all x,y ∈X.

We now review some fuzzy logic concepts. A fuzzy subset of a set X is a function

µ :X → [0,1]. For any fuzzy subsets µ and ν of a set X, we define

µ ⊆ ν ⇐⇒ µ(x)≤ ν(x) ∀x ∈X,
(µ∩ν)(x)=min

{
µ(x),ν(x)

} ∀x ∈X.
(2.1)

Let f : X → Y be a function from a set X to a set Y and let µ be a fuzzy subset of X.
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The fuzzy subset ν of Y defined by

ν(y) :=



supx∈f−1(y) µ(x) if f−1(y) 
= ∅, ∀y ∈ Y ,
0 otherwise,

(2.2)

is called the image of µ under f , denoted by f[µ]. If ν is a fuzzy subset of Y , the

fuzzy subset µ of X given by µ(x) = ν(f(x)) for all x ∈ X is called the preimage of

ν under f and is denoted by f−1[ν].
A fuzzy relation µ on a set X is a fuzzy subset of X ×X, that is, a map µ : X ×

X → [0,1]. A fuzzy subset µ of a BCH-algebra X is called a fuzzy subalgebra of X if

µ(x∗y)≥min{µ(x),µ(y)} for all x,y ∈X.

3. Fuzzy product subalgebras. In what follows let X denote a BCH-algebra unless

otherwise specified.

Definition 3.1. A fuzzy subset µ of X is called a fuzzy dot subalgebra of X if

µ(x∗y)≥ µ(x)·µ(y) for all x,y ∈X.

Example 3.2. Consider a BCH-algebra X = {0,a,b,c} having the following Cayley

table (see [1]):

∗ 0 a b c
0 0 0 0 0

a a 0 0 a
b b c 0 c
c c 0 0 0

Define a fuzzy set µ in X by µ(0)= 0.5, µ(a)= 0.6, µ(b)= 0.4, µ(c)= 0.3. It is easy

to verify that µ is a fuzzy dot subalgebra of X.

Note that every fuzzy subalgebra is a fuzzy dot subalgebra, but the converse is not

true. In fact, the fuzzy dot subalgebra µ in Example 3.2 is not a fuzzy subalgebra since

µ(a∗a)= µ(0)= 0.5< 0.6= µ(a)=min
{
µ(a),µ(a)

}
. (3.1)

Proposition 3.3. If µ is a fuzzy dot subalgebra of X, then

µ(0)≥ (µ(x))2, µ
(
0n∗x)≥ (µ(x))2n+1, (3.2)

for all x ∈ X and n ∈N where 0n∗x = 0∗(0∗(···(0∗x)···)) in which 0 occurs n
times.

Proof. Since x∗x = 0 for all x ∈X, it follows that

µ(0)= µ(x∗x)≥ µ(x)·µ(x)= (µ(x))2
(3.3)

for all x ∈ X. The proof of the second part is by induction on n. For n = 1, we have

µ(0∗x)≥ µ(0)·µ(x)≥ (µ(x))3 for all x ∈X. Assume that µ(0k∗x)≥ (µ(x))2k+1 for
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all x ∈X. Then

µ
(
0k+1∗x)= µ(0∗(0k∗x))≥ µ(0)·µ(0k∗x)

≥ (µ(x))2 ·(µ(x))2k+1 = (µ(x))2(k+1)+1.
(3.4)

Hence µ(0n∗x)≥ (µ(x))2n+1 for all x ∈X and n∈N.

Proposition 3.4. Let µ be a fuzzy dot subalgebra of X. If there exists a sequence

{xn} in X such that limn→∞(µ(xn))2 = 1, then µ(0)= 1.

Proof. According to Proposition 3.3, µ(0) ≥ (µ(xn))2 for each n ∈ N. Since 1 ≥
µ(0)≥ lim

n→∞(µ(xn))
2 = 1, it follows that µ(0)= 1.

Theorem 3.5. If µ and ν are fuzzy dot subalgebras of X, then so is µ∩ν .

Proof. Let x,y ∈X, then

(µ∩ν)(x∗y)=min
{
µ(x∗y),ν(x∗y)}

≥min
{
µ(x)·µ(y),ν(x)·ν(y)}

≥ (min
{
µ(x),ν(x)

})·(min
{
µ(y), ν(y)

})

= ((µ∩ν)(x))·((µ∩ν)(y)).

(3.5)

Hence µ∩ν is a fuzzy dot subalgebra of X.

Note that a fuzzy subset µ of X is a fuzzy subalgebra of X if and only if a nonempty

level subset

U(µ;t) := {x ∈X | µ(x)≥ t} (3.6)

is a subalgebra ofX for every t ∈ [0,1]. But, we know that if µ is a fuzzy dot subalgebra

of X, then there exists t ∈ [0,1] such that

U(µ;t) := {x ∈X | µ(x)≥ t} (3.7)

is not a subalgebra of X. In fact, if µ is the fuzzy dot subalgebra of X in Example 3.2,

then

U(µ;0.4)= {x ∈X | µ(x)≥ 0.4
}= {0,a,b} (3.8)

is not a subalgebra of X since b∗a= c ∉U(µ;0.4).

Theorem 3.6. If µ is a fuzzy dot subalgebra of X, then

U(µ;1) := {x ∈X | µ(x)= 1
}

(3.9)

is either empty or is a subalgebra of X.

Proof. If x and y belong to U(µ;1), then µ(x ∗y) ≥ µ(x) · µ(y) = 1. Hence

µ(x∗y)= 1 which implies x∗y ∈U(µ;1). Consequently,U(µ;1) is a subalgebra ofX.
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Theorem 3.7. Let X be a medial BCH-algebra and let µ be a fuzzy subset of X
such that

µ(0∗x)≥ µ(x), µ
(
x∗(0∗y))≥ µ(x)·µ(y), (3.10)

for all x,y ∈X. Then µ is a fuzzy dot subalgebra of X.

Proof. Since X is medial, we have 0∗(0∗y)=y for all y ∈X. Hence

µ(x∗y)= µ(x∗(0∗(0∗y)))≥ µ(x)·µ(0∗y)≥ µ(x)·µ(y) (3.11)

for all x,y ∈X. Therefore µ is a fuzzy dot subalgebra of X.

Theorem 3.8. Let g : X → Y be a homomorphism of BCH-algebras. If ν is a fuzzy

dot subalgebra of Y , then the preimage g−1[ν] of ν under g is a fuzzy dot subalgebra

of X.

Proof. For any x1,x2 ∈X, we have

g−1[ν]
(
x1∗x2

)= ν(g(x1∗x2
))= ν(g(x1

)∗g(x2
))

≥ ν(g(x1
))·ν(g(x2

))= g−1[ν]
(
x1
)·g−1[ν]

(
x2
)
.

(3.12)

Thus g−1[ν] is a fuzzy dot subalgebra of X.

Theorem 3.9. Let f : X → Y be an onto homomorphism of BCH-algebras. If µ is a

fuzzy dot subalgebra of X, then the image f[µ] of µ under f is a fuzzy dot subalgebra

of Y .

Proof. For any y1,y2 ∈ Y , let A1 = f−1(y1), A2 = f−1(y2), and A12 = f−1(y1∗
y2). Consider the set

A1∗A2 := {x ∈X | x = a1∗a2 for some a1 ∈A1, a2 ∈A2
}
. (3.13)

If x ∈A1∗A2, then x = x1∗x2 for some x1 ∈A1 and x2 ∈A2 so that

f(x)= f (x1∗x2
)= f (x1

)∗f (x2
)=y1∗y2, (3.14)

that is, x ∈ f−1(y1∗y2)=A12. Hence A1∗A2 ⊆A12. It follows that

f[µ]
(
y1∗y2

)= sup
x∈f−1(y1∗y2)

µ(x)= sup
x∈A12

µ(x)

≥ sup
x∈A1∗A2

µ(x)≥ sup
x1∈A1, x2∈A2

µ
(
x1∗x2

)

≥ sup
x1∈A1, x2∈A2

µ
(
x1
)·µ(x2

)
.

(3.15)

Since · : [0,1]× [0,1] → [0,1] is continuous, for every ε > 0 there exists δ > 0

such that if x̃1 ≥ supx1∈A1
µ(x1) − δ and x̃2 ≥ supx2∈A2

µ(x2) − δ, then x̃1 · x̃2 ≥
supx1∈A1

µ(x1) · supx2∈A2
µ(x2)− ε. Choose a1 ∈ A1 and a2 ∈ A2 such that µ(a1) ≥
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supx1∈A1
µ(x1)−δ and µ(a2)≥ supx2∈A2

µ(x2)−δ. Then

µ
(
a1
)·µ(a2

)≥ sup
x1∈A1

µ
(
x1
)· sup

x2∈A2

µ
(
x2
)−ε. (3.16)

Consequently,

f[µ]
(
y1∗y2

)≥ sup
x1∈A1, x2∈A2

µ
(
x1
)·µ(x2

)

≥ sup
x1∈A1

µ
(
x1
)· sup

x2∈A2

µ
(
x2
)

= f[µ](y1
)·f[µ](y2

)
,

(3.17)

and hence f[µ] is a fuzzy dot subalgebra of Y .

Definition 3.10. Let σ be a fuzzy subset of X. The strongest fuzzy σ -relation on

X is the fuzzy subset µσ of X×X given by µσ(x,y)= σ(x)·σ(y) for all x,y ∈X.

Theorem 3.11. Let µσ be the strongest fuzzy σ -relation on X, where σ is a fuzzy

subset of X. If σ is a fuzzy dot subalgebra of X, then µσ is a fuzzy dot subalgebra of

X×X.

Proof. Assume that σ is a fuzzy dot subalgebra of X. For any x1, x2, y1, y2 ∈X,

we have

µσ
((
x1,y1

)∗(x2,y2
))= µσ

(
x1∗x2,y1∗y2

)

= σ(x1∗x2
)·σ(y1∗y2

)

≥ (σ(x1
)·σ(x2

))·(σ(y1
)·σ(y2

))

= (σ(x1
)·σ(y1

))·(σ(x2
)·σ(y2

))

= µσ
(
x1,y1

)·µσ
(
x2,y2

)
,

(3.18)

and so µσ is a fuzzy dot subalgebra of X×X.

Definition 3.12. Let σ be a fuzzy subset of X. A fuzzy relation µ on X is called a

fuzzy σ -product relation if µ(x,y)≥ σ(x)·σ(y) for all x,y ∈X.

Definition 3.13. Let σ be a fuzzy subset of X. A fuzzy relation µ on X is called a

left fuzzy relation on σ if µ(x,y)= σ(x) for all x,y ∈X.

Similarly, we can define a right fuzzy relation on σ . Note that a left (resp., right)

fuzzy relation on σ is a fuzzy σ -product relation.

Theorem 3.14. Let µ be a left fuzzy relation on a fuzzy subset σ of X. If µ is a fuzzy

dot subalgebra of X×X, then σ is a fuzzy dot subalgebra of X.

Proof. Assume that a left fuzzy relation µ on σ is a fuzzy dot subalgebra of X×X.

Then

σ
(
x1∗x2

)= µ(x1∗x2,y1∗y2
)= µ((x1,y1

)∗(x2,y2
))

≥ µ(x1,y1
)·µ(x2,y2

)= σ(x1
)·σ(x2

) (3.19)

for all x1,x2,y1,y2 ∈X. Hence σ is a fuzzy dot subalgebra of X.
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Theorem 3.15. Let µ be a fuzzy relation on X satisfying the inequality µ(x,y) ≤
µ(x,0) for all x,y ∈ X. Given z ∈ X, let σz be a fuzzy subset of X defined by σz(x)=
µ(x,z) for all x ∈ X. If µ is a fuzzy dot subalgebra of X×X, then σz is a fuzzy dot

subalgebra of X for all z ∈X.

Proof. Let z,x,y ∈X, then

σz(x∗y)= µ(x∗y,z)= µ(x∗y,z∗0)

= µ((x,z)∗(y,0))≥ µ(x,z)·µ(y,0)
≥ µ(x,z)·µ(y,z)= σz(x)·σz(y),

(3.20)

completing the proof.

Theorem 3.16. Let µ be a fuzzy relation on X and let σµ be a fuzzy subset of X
given by σµ(x) = infy∈X µ(x,y)·µ(y,x) for all x ∈ X. If µ is a fuzzy dot subalgebra

of X×X satisfying the equality µ(x,0) = 1 = µ(0,x) for all x ∈ X, then σµ is a fuzzy

dot subalgebra of X.

Proof. For any x,y,z ∈X, we have

µ(x∗y,z)= µ(x∗y,z∗0)= µ((x,z)∗(y,0))

≥ µ(x,z)·µ(y,0)= µ(x,z),

µ(z,x∗y)= µ(z∗0,x∗y)= µ((z,x)∗(0,y))

≥ µ(z,x)·µ(0,y)= µ(z,x).

(3.21)

It follows that

µ(x∗y,z)·µ(z,x∗y)≥ µ(x,z)·µ(z,x)
≥ (µ(x,z)·µ(z,x))·(µ(y,z)·µ(z,y)) (3.22)

so that

σµ(x∗y)= inf
z∈X

µ(x∗y,z)·µ(z,x∗y)

≥
(

inf
z∈X

µ(x,z)·µ(z,x)
)
·
(

inf
z∈X

µ(y,z)·µ(z,y)
)

= σµ(x)·σµ(y).

(3.23)

This completes the proof.

Definition 3.17 (see Choudhury et al. [3]). A fuzzy map f from a set X to a set Y
is an ordinary map from X to the set of all fuzzy subsets of Y satisfying the following

conditions:

(C1) for all x ∈X, there exists yx ∈X such that (f (x))(yx)= 1,

(C2) for all x ∈X, f(x)(y1)= f(x)(y2) implies y1 =y2.

One observes that a fuzzy map f from X to Y gives rise to a unique ordinary map

µf :X×X → I, given by µf (x,y)= f(x)(y). One also notes that a fuzzy map from X
to Y gives a unique ordinary map f1 :X → Y defined as f1(x)=yx.



ON FUZZY DOT SUBALGEBRAS OF BCH-ALGEBRAS 363

Definition 3.18. A fuzzy map f from a BCH-algebraX to a BCH-algebra Y is called

a fuzzy homomorphism if

µf
(
x1∗x2,y

)= sup
y=y1∗y2

µf
(
x1,y1

)·µf
(
x2,y2

)
(3.24)

for all x1,x2 ∈X and y ∈ Y .

One notes that if f is an ordinary map, then the above definition reduces to an

ordinary homomorphism. One also observes that if a fuzzy map f is a fuzzy homo-

morphism, then the induced ordinary map f1 is an ordinary homomorphism.

Proposition 3.19. Let f :X → Y be a fuzzy homomorphism of BCH-algebras. Then

(i) µf (x1∗x2,y1∗y2)≥ µf (x1,y1)·µf (x2,y2) for all x1,x2 ∈X and y1,y2 ∈ Y .

(ii) µf (0,0)= 1.
(iii) µf (0∗x,0∗y)≥ µf (x,y) for all x ∈X and y ∈ Y .

(iv) if Y is medial and µf (x,y) = t 
= 0, then µf (0,yx ∗y) = t for all x ∈ X and

y ∈ Y , where yx ∈ Y with µf (x,yx)= 1.

Proof. (i) For every x1,x2 ∈X and y1,y2 ∈ Y , we have

µf
(
x1∗x2, y1∗y2

)= sup
y1∗y2=ỹ1∗ỹ2

µf
(
x1, ỹ1

)·µf
(
x2, ỹ2

)

≥ µf
(
x1,y1

)·µf
(
x2,y2

)
.

(3.25)

(ii) Let x ∈X and yx ∈ Y be such that µf (x,yx)= 1. Using (I) and (i), we get

µf (0,0)= µf
(
x∗x,yx∗yx

)≥ µf
(
x,yx

)·µf
(
x,yx

)= 1 (3.26)

and so µf (0,0)= 1.

(iii) The proof follows from (i) and (ii).

(iv) Assume that Y is medial and µf (x,y)= t 
= 0 for all x ∈ X and y ∈ Y , and let

yx ∈ Y be such that µf (x,yx)= 1. Then

µf
(
0,yx∗y

)= µf
(
x∗x,yx∗y

)≥ µf
(
x,yx

)·µf (x,y)
= t = µf (x,y)= µf

(
x∗0,yx∗

(
yx∗y

))

≥ µf
(
x,yx

)·µf
(
0,yx∗y

)= µf
(
0,yx∗y

)
,

(3.27)

and hence µf (0,yx∗y)= t. This completes the proof.
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