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1. Introduction. In [4], Hu and Li introduced the notion of BCH-algebras which
are a generalization of BCK/BCI-algebras. In 1965, Zadeh [6] introduced the concept
of fuzzy subsets. Since then several researchers have applied this notion to various
mathematical disciplines. Jun [5] applied it to BCH-algebras, and he considered the
fuzzification of ideals and filters in BCH-algebras. In this paper, we introduce the
notion of a fuzzy dot subalgebra of a BCH-algebra as a generalization of a fuzzy
subalgebra of a BCH-algebra, and then we investigate several basic properties related
to fuzzy dot subalgebras.

2. Preliminaries. A BCH-algebra is an algebra (X, %,0) of type (2,0) satisfying the

following conditions:
i) xxx=0,
(i) x*y =0= 1y *xx implies x =y,

(iii) (x*ky)*xz=(x*x2z)*xy forall x,y,z € X.

In any BCH-algebra X, the following hold (see [2]):

(P1) x*0 = x,

(P2) x*0 =0 implies x =0,

(P3) 0% (x*ky)=(0%x)*(0xy).

A BCH-algebra X is said to be medial if x % (x * y) = y for all x,y € X. A nonempty
subset S of a BCH-algebra X is called a subalgebra of X if x x y € S whenever x,y €
S. A map f from a BCH-algebra X to a BCH-algebra Y is called a homomorphism if
fxxy)=f(x)*xf(y)forall x,y € X.

We now review some fuzzy logic concepts. A fuzzy subset of a set X is a function
u:X — [0,1]. For any fuzzy subsets py and v of a set X, we define

USV <= u(x)<v(x) VxeX,
2.1
(1N v)(x) = min {u(x),v(x)} Vx € X. (2.1)

Let f: X — Y be a function from a set X to a set Y and let u be a fuzzy subset of X.
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The fuzzy subset v of Y defined by

(2.2)

v(y) = SUpyef1(y H(x) if fT1(¥) £ D, Vy ey,
- |o otherwise,

is called the image of y under f, denoted by f[u]. If v is a fuzzy subset of Y, the
fuzzy subset y of X given by u(x) = v(f(x)) for all x € X is called the preimage of
v under f and is denoted by f~1[v].

A fuzzy relation p on a set X is a fuzzy subset of X x X, that is, a map u : X x
X — [0,1]. A fuzzy subset u of a BCH-algebra X is called a fuzzy subalgebra of X if
u(x*y)=min{u(x),u(y)} forall x,y € X.

3. Fuzzy product subalgebras. In what follows let X denote a BCH-algebra unless
otherwise specified.

DEFINITION 3.1. A fuzzy subset u of X is called a fuzzy dot subalgebra of X if
H(x*xy) = p(x)-u(y) forall x,y € X.

EXAMPLE 3.2. Consider a BCH-algebra X = {0,a,b,c} having the following Cayley
table (see [1]):

O T Q O %
o T o0
S O O O
S 0 Q8 oOn

S 0 O O

Define a fuzzy set pyin X by u(0) = 0.5, u(a) = 0.6, u(b) = 0.4, u(c) = 0.3. It is easy
to verify that u is a fuzzy dot subalgebra of X.

Note that every fuzzy subalgebra is a fuzzy dot subalgebra, but the converse is not
true. In fact, the fuzzy dot subalgebra p in Example 3.2 is not a fuzzy subalgebra since

ulaxa) =p(0) =0.5<0.6=pu(a)=min{u(a),ua)}. (3.1)

PROPOSITION 3.3. If u is a fuzzy dot subalgebra of X, then

2n+1

p(0) = (u(x))?% u(0" % x) = (u(x)) , (3.2)

forall x e X and n € N where 0" xx =0 (0% (- -- (0% x)---)) in which 0 occurs n
times.

PROOF. Since x * x = 0 for all x € X, it follows that
H(0) = p(x % x) = p(x) - p(x) = (u(x))* (3.3)

for all x € X. The proof of the second part is by induction on n. For n = 1, we have
H(0%xx) = p(0)-pu(x) = (u(x))3 for all x € X. Assume that p(0% % x) = (u(x))2*+! for
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all x € X. Then

U0 % x) = (0% (0K % x)) = p(0) - u (0% % x)

2kl _ (34)

> (100)* - (100) ™ = (ue)

Hence p(0™ % x) = (u(x))?"+! for all x € X and n € N. O

PROPOSITION 3.4. Let u be a fuzzy dot subalgebra of X. If there exists a sequence
{xn} in X such that lim,,_.., (u(x,))% =1, then u(0) = 1.

PROOF. According to Proposition 3.3, u(0) = (u(xy,))? for each n € N. Since 1 >
u(0) = 7llizro1o(u(xn))2 =1, it follows that u(0) = 1. O

THEOREM 3.5. If u and v are fuzzy dot subalgebras of X, then so is unv.
PROOF. Let x,y € X, then

(N V) (x*y) =min{p(x*y),v(x*xy)}
> min{u(x)-p(y),v(x) vy}

3.5
> (min {pu(x),v(x)}) - (min {u(y), v(¥)}) 32)
= ((unv)(x) - ((unV)(¥)).
Hence unv is a fuzzy dot subalgebra of X. O

Note that a fuzzy subset u of X is a fuzzy subalgebra of X if and only if a nonempty
level subset

Ulp;t) == {x e X | pu(x) = t} (3.6)

is a subalgebra of X for every t € [0, 1]. But, we know that if u is a fuzzy dot subalgebra
of X, then there exists t € [0,1] such that

Up;t) == {x € X | pu(x) > t} (3.7)

is not a subalgebra of X. In fact, if u is the fuzzy dot subalgebra of X in Example 3.2,
then

U(u;0.4) = {x € X | u(x) = 0.4} = {0,a,b} (3.8)
is not a subalgebra of X since b*xa =c ¢ U(u;0.4).

THEOREM 3.6. If u is a fuzzy dot subalgebra of X, then
U :={xe X |u(x) =1} (3.9)

is either empty or is a subalgebra of X.

PrROOF. If x and y belong to U(u;1), then u(x *x y) > u(x) - u(y) = 1. Hence
u(x*x7y) =1whichimplies x *y € U(u;1). Consequently, U (u;1) is a subalgebra of X.
O
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THEOREM 3.7. Let X be a medial BCH-algebra and let u be a fuzzy subset of X
such that

HOxx) = p(x),  p(x*x(0%xy)) = p(x)-py), (3.10)

for all x,y € X. Then u is a fuzzy dot subalgebra of X.

PROOF. Since X is medial, we have 0% (0% y) = y for all v € X. Hence
p(xky) =p(x* (0% (0% y))) = pu(x) - p0*y) = p(x)-pu(y) (3.11)

for all x,y € X. Therefore u is a fuzzy dot subalgebra of X. O

THEOREM 3.8. Let g: X — Y be a homomorphism of BCH-algebras. If v is a fuzzy
dot subalgebra of Y, then the preimage g~'[v] of v under g is a fuzzy dot subalgebra
of X.

PROOF. For any x1,x2 € X, we have

g IVI(x1 % x2) = v(g(x1 ¥ x2)) = v(g(x1) xg(x2)) (3.12)
>v(g(x1))-v(g(x2)) =g ' [v1(x1) - g7 [v](x2). -
Thus g~'[v] is a fuzzy dot subalgebra of X. O

THEOREM 3.9. Let f : X — Y be an onto homomorphism of BCH-algebras. If u is a
fuzzy dot subalgebra of X, then the image f[u] of u under f is a fuzzy dot subalgebra
ofY.

PROOF. For any y,v> € Y, let A; = f1(y1), A2 = f1(y2),and A = f1 (1 *
y2). Consider the set

Al %Ay :={x €X|x=a;*a; for some a; € Ay, a € A}. (3.13)
If x € A1 % Ay, then x = x7 * x> for some x; € A; and x» € A, so that
fx) = fx1%x2) = f(x1) % f(x2) = y1 %2, (3.14)

that is, x € f~1(y1 * y2) = A12. Hence A; x A € Aj,. It follows that

Sflul(yvi*y2)= sup  p(x) = sup p(x)
xef~H(y1xy2) X€AY2
> sup p(x)=  sup  p(x1xx2) (3.15)
xeA1 %A X1€A1, X2€AD

\%

sup  p(xy) - u(x2).

X1€A], Xp€A?

Since - : [0,1] x [0,1] — [0,1] is continuous, for every ¢ > 0 there exists 6 > 0
such that if X; = supy, e, H(x1) — 6 and X2 = supy,ea, H(X2) — 6, then X1 - X2 =
SUPy, e, H(X1) - SUDy,ea, H(X2) — . Choose a; € Ay and a» € A, such that u(a;) =
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SUDy, e, M(X1) =6 and p(az) = supy,ea, H(x2) — 6. Then

p(ar)-p(az) = sup p(xi)- sup p(xz)—&. (3.16)

X1€A1 Xp €A
Consequently,

Sl *ky2) = sup  p(x1)-p(xz)

X1€A], X2€Ap

> sup p(xy)- sup p(xz) (3.17)

X1E€A] X2 €A
= flul(n) - flul(y2),
and hence f[u] is a fuzzy dot subalgebra of Y. O

DEFINITION 3.10. Let 0 be a fuzzy subset of X. The strongest fuzzy o -relation on
X is the fuzzy subset u, of X x X given by uqs(x,v) =0 (x)-o(y) forall x,y € X.

THEOREM 3.11. Let uy, be the strongest fuzzy o -relation on X, where o is a fuzzy
subset of X. If o is a fuzzy dot subalgebra of X, then L, is a fuzzy dot subalgebra of
XxX.

PROOF. Assume that o is a fuzzy dot subalgebra of X. For any x1, x2, ¥1, V2 € X,
we have

Ho ((x1,1) * (x2,52)) = Ho (X1 % X2, Y1 % ¥2)
=0 (x1%x2) -0 (y1%2)
= (0(x1) -0 (x2)) - (0(31) - 0 (32)) (3.18)
=(o(x1)-0(n)) - (0(x2)-0(y2))
= Ho (x1,21) - Ho (X2,72),
and so U, is a fuzzy dot subalgebra of X x X. O

DEFINITION 3.12. Let o be a fuzzy subset of X. A fuzzy relation p on X is called a
fuzzy o -product relation if u(x,y) = o(x)-o(y) for all x,y € X.

DEFINITION 3.13. Let 0 be a fuzzy subset of X. A fuzzy relation u on X is called a
left fuzzy relation on o if u(x,y) =o(x) forall x,y € X.

Similarly, we can define a right fuzzy relation on o. Note that a left (resp., right)
fuzzy relation on o is a fuzzy o-product relation.

THEOREM 3.14. Let u be a left fuzzy relation on a fuzzy subset o of X. If u is a fuzzy
dot subalgebra of X x X, then o is a fuzzy dot subalgebra of X.

PROOF. Assume that aleft fuzzy relation p on o is a fuzzy dot subalgebra of X x X.
Then
o (x1%x2) = H(x1 kX2, 71 % V2) = H((x1,21) * (X2,2))
(3.19)
= p(x1,1) - u(x2,2) = o (x1) -0 (x2)

for all x1,x2,¥1,y2 € X. Hence o is a fuzzy dot subalgebra of X. O
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THEOREM 3.15. Let u be a fuzzy relation on X satisfying the inequality u(x,y) <
u(x,0) forall x,y € X. Given z € X, let 0, be a fuzzy subset of X defined by o,(x) =
u(x,z) for all x € X. If u is a fuzzy dot subalgebra of X x X, then o, is a fuzzy dot
subalgebra of X for all z € X.

PROOF. let z,x,y € X, then
oz (x*y)=p(x*xy,z) =pu(x*xy,zx0)
=pu((x,2) % (,0)) = u(x,z) - u(y,0) (3.20)
> u(x,z) -u(y,z) =o0z(x)- o0:(y),
completing the proof. O

THEOREM 3.16. Let u be a fuzzy relation on X and let o, be a fuzzy subset of X
given by o, (x) =inf,exp(x,y) - u(y,x) for all x € X. If u is a fuzzy dot subalgebra
of X x X satisfying the equality u(x,0) =1 = u(0,x) for all x € X, then o, is a fuzzy
dot subalgebra of X.

PROOF. For any x,y,z € X, we have

p(x*y,z) =p(x*y,zx0) = u((x,2) * (3,0))
> p(x,z) - u(y,0) = u(x,z),

(3.21)
u(z,x*y)=u(z*%0,x*xy)=pu((z,x)*(0,y))
> p(z,x) - u(0,y) = u(z,x).
It follows that
H(x*xy,z) - pu(z,xxy) =2 u(x,z) - u(z,x)
(3.22)
> (u(x,2)-p(z,x)) - (u(y,2)-u(z,3))
so that
ou(x*xy)= Zig(u(x*y,z) sp(z,x %k y)
> (;rel)f(u(x,z) -u(z,x)) . (Zirel)f(u(y,z) -u(z,y)) (3.23)
=ou(x)-ou(y).
This completes the proof. O

DEFINITION 3.17 (see Choudhury et al. [3]). A fuzzy map f from a set X toasetY
is an ordinary map from X to the set of all fuzzy subsets of Y satisfying the following
conditions:

(C1) for all x € X, there exists y, € X such that (f(x))(yx) =1,

(C2) forall x € X, f(x)(y1) = f(x)(y2) implies y; = y».

One observes that a fuzzy map f from X to Y gives rise to a unique ordinary map
Hp: XXX — 1, given by pr(x,y) = f(x)(y). One also notes that a fuzzy map from X
to Y gives a unique ordinary map f; : X — Y defined as fi(x) = yx.
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DEFINITION 3.18. A fuzzy map f from a BCH-algebra X to a BCH-algebra Y is called
a fuzzy homomorphism if

Up(x1%kx2,y) = sup pr(x1,01) - Hp(x2,¥2) (3.24)
y=y1%y2

forall x;,x, e Xand y €Y.

One notes that if f is an ordinary map, then the above definition reduces to an
ordinary homomorphism. One also observes that if a fuzzy map f is a fuzzy homo-
morphism, then the induced ordinary map f; is an ordinary homomorphism.

PROPOSITION 3.19. Let f : X — Y be a fuzzy homomorphism of BCH-algebras. Then
(@) pr(xr*x2,1%2) = Up(x1,21) - Up(x2,02) for all x1,x, € X and y1,y, €Y.
(i) pr(0,0)=1.

(i) pr(O*xx,0%xy)=pur(x,y) forallxeXandy Y.
(iv) ifY is medial and pg(x,y) =t # 0, then us(0,¥x *xy) =t for all x € X and
Y €Y, where yx €Y with ps(x,yx) = 1.

PROOF. (i) For every x1,x2 € X and y;,y» € Y, we have

pp(xikx2, yixy2) = sup  py(x1, 1) - py(x2,52)
YV1*Y2=Y1%Y2 (325)

ZUf(leyl)'IJf(Xz,yz)-

(ii) Let x € X and yx €Y be such that us(x,y,) = 1. Using (I) and (i), we get

pyp(0,0) = pp(x kX, Vi k ¥x) = pp (X, Vi) - Hp (X, %) =1 (3.26)

and so ur(0,0) = 1.

(iii) The proof follows from (i) and (ii).

(iv) Assume that Y is medial and ps(x,y) =t # 0 for all x € X and y € Y, and let
¥x € Y be such that ps(x,yx) = 1. Then

Hr(0, 5k y) = pp (X kX, V5 k ) = tp (3, 7x) - pp(x, )
=t=pp(x,n) = pr(x k0, yx*k (¥x % ¥)) (3.27)
= pp (%, ¥x) - 1p (0, 0x % ) = pp (0, vx % ),
and hence (0, yx * y) = t. This completes the proof. O
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