

ON THE EXTENDED HARDY'S INEQUALITY

YAN PING

(Received 16 February 2000)

ABSTRACT. We generalize a strengthened version of Hardy's inequality and give a new simpler proof.

2000 Mathematics Subject Classification. 26D15, 40A25.

In the recent paper [4], Hardy's inequality was generalized. In this note, the results given in [4] are further generalized and a new much simpler proof is given. The following Hardy's inequality is well known [1, Theorem 349].

THEOREM 1 (Hardy's inequality). *Let $\lambda_n > 0$, $A_n = \sum_{k=1}^n \lambda_k$, $a_n \geq 0$ ($n \in \mathbb{N}$), $0 < \sum_{n=1}^{\infty} \lambda_n a_n < +\infty$, then*

$$\sum_{n=1}^{\infty} \lambda_n (a_1^{\lambda_1} a_2^{\lambda_2} \cdots a_n^{\lambda_n})^{1/A_n} < e \sum_{n=1}^{\infty} \lambda_n a_n. \quad (1)$$

Recently, [4] gave an improvement of **Theorem 1**, and the following result was proved.

THEOREM 2. *Let $0 < \lambda_{n+1} \leq \lambda_n$, $A_n = \sum_{k=1}^n \lambda_k$, $a_n \geq 0$ ($n \in \mathbb{N}$), $0 < \sum_{n=1}^{\infty} \lambda_n a_n < +\infty$, then*

$$\sum_{n=1}^{\infty} \lambda_{n+1} (a_1^{\lambda_1} a_2^{\lambda_2} \cdots a_n^{\lambda_n})^{1/A_n} < e \sum_{n=1}^{\infty} \left(1 - \frac{\lambda_n}{2(A_n + \lambda_n)}\right) \lambda_n a_n. \quad (2)$$

In this note, we will prove the following theorem.

THEOREM 3. *Let $0 < \lambda_{n+1} \leq \lambda_n$, $A_n = \sum_{k=1}^n \lambda_k$, $a_n \geq 0$ ($n \in \mathbb{N}$), $0 < \sum_{n=1}^{\infty} \lambda_n a_n < +\infty$, then*

$$\sum_{n=1}^{\infty} \lambda_{n+1} (a_1^{\lambda_1} a_2^{\lambda_2} \cdots a_n^{\lambda_n})^{1/A_n} < e \sum_{n=1}^{\infty} \left(1 + \frac{5\lambda_n}{5A_n + \lambda_n}\right)^{-1/2} \lambda_n a_n. \quad (3)$$

To prove **Theorem 3**, we introduce some lemmas.

LEMMA 4. *For $x > 0$, then*

$$e \left(1 - \frac{1}{2x+1}\right) < \left(1 + \frac{1}{x}\right)^x < e \left(1 + \frac{5}{5x+1}\right)^{-1/2}. \quad (4)$$

PROOF. (i) Define $f(x)$ as

$$f(x) = x \ln \left(1 + \frac{1}{x}\right) + \frac{1}{2} \ln \left(1 + \frac{5}{5x+1}\right), \quad x \in (0, +\infty). \quad (5)$$

It is obvious that when $x > 0$, the inequality

$$\left(1 + \frac{1}{x}\right)^x < e \left(1 + \frac{5}{5x+1}\right)^{-1/2} \quad (6)$$

is equivalent to $f(x) < 1$. It is easy to see that

$$f'(x) = -\frac{1}{x+1} + \ln \left(1 + \frac{1}{x}\right) - \frac{25}{2(5x+6)(5x+1)} \quad (7)$$

and for $x \in (0, +\infty)$, it can be shown that

$$\begin{aligned} f''(x) &= \frac{1}{(x+1)^2} - \frac{1}{x(x+1)} + \frac{25}{2(5x+1)^2} - \frac{25}{2(5x+6)^2} \\ &= \frac{-125x^3 - 50x^2 + 35x - 72}{2x(x+1)^2(5x+1)^2(5x+6)^2} < 0. \end{aligned} \quad (8)$$

Hence $f'(x)$ is decreasing on $(0, +\infty)$. Then for any $x \in (0, +\infty)$, we have $f'(x) > \lim_{x \rightarrow +\infty} f'(x) = 0$, thus, $f(x)$ is increasing on $(0, +\infty)$, and $f(x) < \lim_{x \rightarrow +\infty} f(x) = 1$ for $x \in (0, +\infty)$. The inequality (6) is valid.

(ii) Define $g(x)$ as

$$g(x) = x \ln \left(1 + \frac{1}{x}\right) - \ln \left(1 - \frac{1}{2x+1}\right), \quad x \in (0, +\infty). \quad (9)$$

When $x > 0$, the inequality

$$e \left(1 - \frac{1}{2x+1}\right) < \left(1 + \frac{1}{x}\right)^x \quad (10)$$

is equivalent to $g(x) > 1$. For $x \in (0, +\infty)$, it can be shown that

$$\begin{aligned} g'(x) &= -\frac{1}{x+1} + \ln \left(1 + \frac{1}{x}\right) - \frac{1}{x(2x+1)}, \\ g''(x) &= \frac{5x^2 + 5x + 1}{x^2(x+1)^2(2x+1)^2} > 0. \end{aligned} \quad (11)$$

Hence, $g'(x)$ is increasing on $(0, +\infty)$. Then for any $x \in (0, +\infty)$, we have $g'(x) < \lim_{x \rightarrow +\infty} g'(x) = 0$, therefore, $g(x)$ is decreasing on $(0, +\infty)$ and $g(x) > \lim_{x \rightarrow +\infty} g(x) = 1$ for $x \in (0, +\infty)$. Inequality (10) is valid.

By virtue of (6) and (10), inequalities (4) are valid. This proves **Lemma 4**. \square

REMARK 5. By a direct calculation, we have

$$\left(1 + \frac{5}{5x+1}\right)^{-1/2} < 1 - \frac{1}{2(x+19/20)} \quad (x > 0). \quad (12)$$

Then by (4) and (12), we have

$$e\left(1 - \frac{1}{2x+1}\right) < \left(1 + \frac{1}{x}\right)^x < e\left[1 - \frac{1}{2(x+19/20)}\right] \quad (x > 0). \quad (13)$$

Inequality (13) is equivalent to

$$\frac{e}{2(x+19/20)} < e - \left(1 + \frac{1}{x}\right)^x < \frac{e}{2x+1} \quad (x > 0). \quad (14)$$

Thus, [1, Lemma 2] is contained in Lemma 4. Inequalities (4) and (14) are the new inequalities on the constant e (cf. [3, Theorem 3.8.26]; and [2, page 358]).

LEMMA 6 (see [1, Theorem 9]). *Let $g_m > 0$, $\alpha_m \geq 0$ ($m = 1, 2, \dots, n$), $\sum_{m=1}^n g_m = 1$, then*

$$\alpha_1^{g_1} \alpha_2^{g_2} \cdots \alpha_n^{g_n} \leq \sum_{m=1}^n g_m \alpha_m. \quad (15)$$

PROOF OF THEOREM 3. Setting $c_m > 0$, $g_m = \lambda_m/A_n$, $\alpha_m = c_m \alpha_m$ ($m = 1, 2, \dots, n$), by Lemma 6, we have

$$(c_1 a_1)^{\lambda_1/A_1} (c_2 a_2)^{\lambda_2/A_2} \cdots (c_n a_n)^{\lambda_n/A_n} \leq \frac{1}{A_n} \sum_{m=1}^n \lambda_m c_m \alpha_m. \quad (16)$$

Then we find that

$$\begin{aligned} \sum_{n=1}^{\infty} \lambda_{n+1} (a_1^{\lambda_1} a_2^{\lambda_2} \cdots a_n^{\lambda_n})^{1/A_n} &= \sum_{n=1}^{\infty} \lambda_{n+1} \frac{(c_1 a_1)^{\lambda_1/A_1} (c_2 a_2)^{\lambda_2/A_2} \cdots (c_n a_n)^{\lambda_n/A_n}}{(c_1^{\lambda_1} c_2^{\lambda_2} \cdots c_n^{\lambda_n})^{1/A_n}} \\ &\leq \sum_{n=1}^{\infty} \left[\frac{\lambda_{n+1}}{(c_1^{\lambda_1} c_2^{\lambda_2} \cdots c_n^{\lambda_n})^{1/A_n}} \right] \frac{1}{A_n} \sum_{m=1}^n c_m \lambda_m \alpha_m \\ &= \sum_{m=1}^{\infty} \lambda_m \alpha_m c_m \sum_{n=m}^{\infty} \frac{\lambda_{n+1}}{A_n (c_1^{\lambda_1} c_2^{\lambda_2} \cdots c_n^{\lambda_n})^{1/A_n}}. \end{aligned} \quad (17)$$

Define $c_m = ((A_{m+1})/A_m)^{A_m/\lambda_m} A_m$ ($m = 1, 2, \dots$) and $A_0 = 0$. Because $0 < \lambda_{n+1} \leq \lambda_n$ ($n = 1, 2, \dots$), we have

$$\begin{aligned} c_m^{\lambda_m} &= \frac{(A_{m+1})^{A_m}}{A_m^{A_{m-1}}}; \quad \left(c_1^{\lambda_1} c_2^{\lambda_2} \cdots c_n^{\lambda_n} \right)^{1/A_n} = A_{n+1} \quad (n \in \mathbb{N}); \\ c_m \sum_{n=m}^{\infty} \frac{\lambda_{n+1}}{A_n (c_1^{\lambda_1} c_2^{\lambda_2} \cdots c_n^{\lambda_n})^{1/A_n}} &= \left(\frac{A_{m+1}}{A_m} \right)^{A_m/\lambda_m} A_m \sum_{n=m}^{\infty} \frac{\lambda_{n+1}}{A_n A_{n+1}} \\ &= \left(1 + \frac{\lambda_{m+1}}{A_m} \right)^{A_m/\lambda_m} A_m \sum_{n=m}^{\infty} \left(\frac{1}{A_n} - \frac{1}{A_{n+1}} \right) \\ &\leq \left(1 + \frac{\lambda_m}{A_m} \right)^{A_m/\lambda_m}. \end{aligned} \quad (18)$$

Then by (4) and (17), we obtain that

$$\begin{aligned} \sum_{n=1}^{\infty} \lambda_{n+1} (a_1^{\lambda_1} a_2^{\lambda_2} \cdots a_n^{\lambda_n})^{1/A_n} &\leq \sum_{m=1}^{\infty} \left(1 + \frac{\lambda_m}{A_m}\right)^{A_m/\lambda_m} \lambda_m a_m \\ &\leq e \sum_{m=1}^{\infty} \left(1 + \frac{5\lambda_m}{5A_m + \lambda_m}\right)^{-1/2} \lambda_m a_m. \end{aligned} \quad (19)$$

Hence inequality (3) is valid, and **Theorem 3** is proved. □

REMARK 7. With inequality (12), **Theorem 3** is obviously an improvement and an extension of [4, Theorem 1].

Setting $\lambda_n \equiv 1$, (3) changes into

$$\sum_{n=1}^{\infty} (a_1 a_2 \cdots a_n)^{1/n} < e \sum_{n=1}^{\infty} \left(1 + \frac{5}{5n+1}\right)^{-1/2} a_n. \quad (20)$$

By inequality (12), we have

$$\sum_{n=1}^{\infty} (a_1 a_2 \cdots a_n)^{1/n} < e \sum_{n=1}^{\infty} \left[1 - \frac{1}{2(n+19/20)}\right] a_n. \quad (21)$$

Thus, inequalities (20) and (21) are obviously an improvement and extension of [5, Theorem 3.1].

REFERENCES

- [1] G. H. Hardy, J. E. Littlewood, and G. Pólya, *Inequalities*, 2nd ed., Cambridge University Press, Cambridge, 1952. [MR 13,727e](#). [Zbl 047.05302](#).
- [2] J. C. Kuang, *Changyong budengshi* [Applied Inequalities], 2nd ed., Hunan Jiaoyu Chubanshe, Changsha, 1993 (Chinese). [MR 95j:26001](#).
- [3] D. S. Mitrinović, *Analytic Inequalities*, Die Grundlehren der mathematischen Wissenschaften, vol. 165, Springer-Verlag, New York, 1970. [MR 43#448](#). [Zbl 0199.38101](#).
- [4] B. Yang, *On Hardy's inequality*, J. Math. Anal. Appl. **234** (1999), no. 2, 717–722. [MR 2000b:26032](#). [Zbl 946.26011](#).
- [5] B. Yang and L. Debnath, *Some inequalities involving the constant e, and an application to Carleman's inequality*, J. Math. Anal. Appl. **223** (1998), no. 1, 347–353. [MR 99h:26026](#). [Zbl 910.26011](#).

YAN PING: DEPARTMENT OF MATHEMATICS, ANHUI NORMAL UNIVERSITY, WUHU CITY, ANHUI 241000, CHINA

Current address: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TURKU, FIN-20014 TURKU, FINLAND

Special Issue on Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from "Qualitative Theory of Differential Equations," allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the *Mathematical Problems in Engineering* aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk